Skip to main content

Distributed Plasticity in the Cerebellar Circuit

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 45 Accesses

Abstract

In contrast with the original Motor Learning Theory that included a single form of plasticity at the parallel fiber—Purkinje cell synapse, recent experimental work has revealed multiple forms of long-term synaptic and non-synaptic plasticity (some of which are bidirectional) distributed among the cerebellar cortex and deep cerebellar nuclei. Thus, understanding cerebellar plasticity requires now that the spatiotemporal interplay of these multiple mechanisms is analyzed during specific behaviors. A recent set of experimental and modeling investigations has opened a new view on how the multiple forms of long-term synaptic plasticity might cooperate to generate cerebellar learning and memory in sensorimotor control tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Attwell PJE, Cooke SF, Yeo CH (2002) Cerebellar function in consolidation of a motor memory. Neuron 34:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Casali S, Tognolina M, Gandolfi D, Mapelli J, D’Angelo E (2020) Cellular-resolution mapping uncovers spatial adaptive filtering at the rat cerebellum input stage. Commun Biol 3(1):635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casellato C, Antonietti A, Garrido JA et al (2014) Adaptive robotic control driven by a versatile spiking cerebellar network. PLoS One 9(11):e112265

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke SF, Attwell PJ, Yeo CH (2004) Temporal properties of cerebellar-dependent memory consolidation. J Neurosci 24:2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo E (2014) The organization of plasticity in the cerebellar cortex: from synapses to control. Prog Brain Res 210:31–58

    Article  PubMed  Google Scholar 

  • D’Angelo E, De Zeeuw CI (2009) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15:667–674

    Article  PubMed  Google Scholar 

  • Dean P, Porrill J (2008) Adaptive-filter models of the cerebellum: computational analysis. Cerebellum 7:567–571

    Article  PubMed  Google Scholar 

  • Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635

    Article  CAS  PubMed  Google Scholar 

  • Garcia KS, Mauk MD (1998) Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology 37:471–480

    Article  CAS  PubMed  Google Scholar 

  • Garrido JA, Luque NR, D’Angelo E, Ros E (2013a) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Front Neuroci Circ 7:159

    Google Scholar 

  • Garrido JA, Ros E, D’Angelo E (2013b) Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Front Comput Neurosci 7:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–476

    Article  CAS  PubMed  Google Scholar 

  • Hull CA, Chu Y, Thanawala M, Regehr WG (2013) Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J Neurosci 33(14):5895–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Koch G, Mori F, Marconi B et al (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. J Clin Neurophysiol 119:2559–2569

    Article  Google Scholar 

  • Lee JY, Schweighofer N (2009) Dual adaptation supports a parallel architecture of motor memory. J Neurosci 29:10396–10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas R, Lang EJ, Welsh JP (1997) The cerebellum, LTD, and memory: alternative views. Learn Mem 3:445–455

    Article  CAS  PubMed  Google Scholar 

  • Locatelli F, Soda T, Montagna I, Tritto S, Botta L, Prestori F, D’Angelo E (2021) Calcium channel-dependent induction of long-term synaptic plasticity at excitatory Golgi cell synapses of cerebellum. J Neurosci 41:3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque NR, Garrido JA, Carrillo RR et al (2014) Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Front Comput Neurosci 8:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Mapelli J, Gandolfi D, Vilella A, Zoli M, Bigiani A (2016) Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors. Proc Natl Acad Sci U S A 113(35):9898–9903. https://doi.org/10.1073/pnas.1601194113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoli S, Ottaviani A, Casali S, D’Angelo E (2020) Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS Comput Biol 16(12):e1007937. eCollection 2020 Dec

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauk MD (1997) Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18:343–346

    Article  CAS  PubMed  Google Scholar 

  • Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3(Suppl):1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Medina JF, Garcia KS, Mauk MD (2001) A mechanism for savings in the cerebellum. J Neurosci 21:4081–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaco J, Casellato C, Koch G et al (2014) Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci 40(9):3363–3370

    Article  CAS  PubMed  Google Scholar 

  • Moscato L, Montagna I, De Propris L, Tritto S, Mapelli L, D’Angelo E (2019) Long-lasting response changes in deep cerebellar nuclei “in vivo” correlate with low-frequency oscillations. Front Cell Neurosci 13:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Rössert C, Solinas S, D’Angelo E et al (2014) Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 8:304

    PubMed  PubMed Central  Google Scholar 

  • Sgritta M, Locatelli F, Soda T, Prestori F, D’Angelo EU (2017) Hebbian spike-timing dependent plasticity at the cerebellar input stage. J Neurosci 37(11):2809–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):e179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Simona Tritto for technical assistance. This work received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Framework Partnership Agreement No. 650003 (HBP FPA) to ED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio D’Angelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Angelo, E. (2023). Distributed Plasticity in the Cerebellar Circuit. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_39

Download citation

Publish with us

Policies and ethics