Skip to main content

Abstract

Neurotransplantation is as a potential therapeutic method for diseases of the nervous system, including the cerebellum. Experiments on laboratory animals have shown many promising results, but also potential risks and limitations, with many questions remaining unanswered. We discuss the main goals of neurotransplantation as a treatment of cerebellar disorders, potential graft effect mechanisms, types of grafts with their advantages and disadvantages, and problems of graft development and functional integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, Jin HK (2007) Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 25(5):1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Baltanas FC, Berciano MT, Valero J, Gomez C, Diaz D, Alonso JR, Lafarga M, Weruaga E (2013) Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 61(2):254–272

    Article  PubMed  Google Scholar 

  • Carletti B, Rossi F (2005) Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Eur J Neurosci 22(5):1001–1012

    Article  PubMed  Google Scholar 

  • Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F (2008) Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol 317(1):147–160

    Article  CAS  PubMed  Google Scholar 

  • Cendelin J, Mitoma H, Manto M (2018a) Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets 17(3):172–183

    Article  CAS  PubMed  Google Scholar 

  • Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y (2018b) Long-term development of embryonic cerebellar grafts in two strains of Lurcher mice. Cerebellum (London, England) 17(4):428–437

    Article  PubMed  Google Scholar 

  • Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, Vozeh F, Manto M (2019) Task force paper on cerebellar transplantation: are we ready to treat cerebellar disorders with cell therapy? Cerebellum (London, England) 18(3):575–592

    Article  CAS  PubMed  Google Scholar 

  • Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, Soong BW, Ho JH, Lee OK (2011) Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci 18:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, Bishop DP, Geuna S, Schiffmann SN, Pandolfo M (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29(42):13126–13135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz D, Recio JS, Weruaga E, Alonso JR (2012) Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells. Cell Transplant 21(7):1595–1602

    Article  PubMed  Google Scholar 

  • Díaz D, Del Pilar C, Carretero J, Alonso JR, Weruaga E (2019) Daily bone marrow cell transplantations for the management of fast neurodegenerative processes. J Tissue Eng Regen Med 13(9):1702–1711

    Article  PubMed  Google Scholar 

  • Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A (2017) Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 102:49–59

    Article  PubMed  Google Scholar 

  • Gandini J, Manto M, Bremova-Ertl T, Feil K, Strupp M (2020) The neurological update: therapies for cerebellar ataxias in 2020. J Neurol 267(4):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Garbuzova-Davis S, Willing AE, Milliken M, Saporta S, Zigova T, Cahill DW, Sanberg PR (2002) Positive effect of transplantation of hNT neurons (NTera 2/D1 cell-line) in a model of familial amyotrophic lateral sclerosis. Exp Neurol 174(2):169–180

    Article  PubMed  Google Scholar 

  • Hara K, Matsukawa N, Yasuhara T, Xu L, Yu G, Maki M, Kawase T, Hess DC, Kim SU, Borlongan CV (2007) Transplantation of post-mitotic human neuroteratocarcinoma-overexpressing Nurr1 cells provides therapeutic benefits in experimental stroke: in vitro evidence of expedited neuronal differentiation and GDNF secretion. J Neurosci Res 85(6):1240–1251

    Article  CAS  PubMed  Google Scholar 

  • Hilber P, Lorivel T, Delarue C, Caston J (2004) Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res 1003(1–2):108–112

    Article  CAS  PubMed  Google Scholar 

  • Houdek Z, Cendelin J, Kulda V, Babuska V, Cedikova M, Kralickova M, Pachernik J, Stefano GB, Vozeh F (2012) Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monit 18(5):Br174–Br180

    Article  PubMed  PubMed Central  Google Scholar 

  • Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, Chan JK, Hirai H (2016) Fusion of human fetal mesenchymal stem cells with “degenerating” cerebellar neurons in spinocerebellar ataxia type 1 model mice. PLoS One 11(11):e0164202

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, Ourednik V, Teng YD, Sidman RL, Arenas E, Snyder EY, Herlenius E (2010) Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A 107(11):5184–5189

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40(2):415–423

    Article  PubMed  Google Scholar 

  • Kaemmerer WF, Low WC (1999) Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol 158(2):301–311

    Article  CAS  PubMed  Google Scholar 

  • Keep M, Alvarado-Mallart RM, Sotelo C (1992) New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev Neurosci 14(2):153–165

    Article  CAS  PubMed  Google Scholar 

  • Kemp KC, Dey R, Verhagen J, Scolding NJ, Usowicz MM, Wilkins A (2018) Aberrant cerebellar Purkinje cell function repaired in vivo by fusion with infiltrating bone marrow-derived cells. Acta Neuropathol 135(6):907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y (1988) Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res 6(2):162–166

    Article  CAS  PubMed  Google Scholar 

  • Kolinko Y, Cendelin J, Kralickova M, Tonar Z (2016) Smaller absolute quantities but greater relative densities of microvessels are associated with cerebellar degeneration in Lurcher mice. Front Neuroanat 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8(6):723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandakova P, Sinkora J, Sima P, Vozeh F (2005) Reduced primary T lymphopoiesis in 3-month-old lurcher mice: sign of premature ageing of thymus? Neuroimmunomodulation 12(6):348–356

    Article  PubMed  Google Scholar 

  • Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H (2014) Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum (London, England) 13(3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L (2015) Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 138(Pt 2):320–335

    Article  PubMed  Google Scholar 

  • Mitoma H, Manto M (2016) The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 9(5):396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10(4):537–550

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Fujimiya M (2021) Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen Res 16(12):2359–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayler S, Agarwal D, Curion F, Bowden R, Becker EBE (2021) High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids. Sci Rep 11(1):12959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleasure SJ, Page C, Lee VM (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12(5):1802–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkartova Z, Tichanek F, Kolinko Y, Cendelin J (2019) Embryonic cerebellar graft morphology differs in two mouse models of cerebellar degeneration. Cerebellum (London, England) 18(5):855–865

    Article  CAS  PubMed  Google Scholar 

  • Rolando C, Gribaudo S, Yoshikawa K, Leto K, De Marchis S, Rossi F (2010) Extracerebellar progenitors grafted to the neurogenic milieu of the postnatal rat cerebellum adapt to the host environment but fail to acquire cerebellar identities. Eur J Neurosci 31(8):1340–1351

    Article  PubMed  Google Scholar 

  • Rosario CM, Yandava BD, Kosaras B, Zurakowski D, Sidman RL, Snyder EY (1997) Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development 124(21):4213–4224

    Article  CAS  PubMed  Google Scholar 

  • Salomova M, Tichanek F, Jelinkova D, Cendelin J (2020) Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neurosci Lett 725:134870

    Article  CAS  PubMed  Google Scholar 

  • Saporta S, Makoui AS, Willing AE, Daadi M, Cahill DW, Sanberg PR (2002) Functional recovery after complete contusion injury to the spinal cord and transplantation of human neuroteratocarcinoma neurons in rats. J Neurosurg 97(1 Suppl):63–68

    PubMed  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM (1987) Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature 327(6121):421–423

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM, Gardette R, Crepel F (1990) Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol 295(2):165–187

    Article  CAS  PubMed  Google Scholar 

  • Suhonen JO, Peterson DA, Ray J, Gage FH (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383(6601):624–627

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Tian ZM, Chen T, Zhong N, Li ZC, Yin F, Liu S (2009) Clinical study of transplantation of neural stem cells in therapy of inherited cerebellar atrophy. Beijing Da Xue Xue Bao Yi Xue Ban 41(4):456–458

    PubMed  Google Scholar 

  • Triarhou LC, Zhang W, Lee WH (1996) Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant 5(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Vernet-der Garabedian B, Derer P, Bailly Y, Mariani J (2013) Innate immunity in the Grid2Lc/+ mouse model of cerebellar neurodegeneration: glial CD95/CD95L plays a non-apoptotic role in persistent neuron loss-associated inflammatory reactions in the cerebellum. J Neuroinflammation 10:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang B, Pan N, Fu L, Wang C, Song G, An J, Liu Z, Zhu W, Guan Y, Xu ZQ, Chan P, Chen Z, Zhang YA (2015) Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Sci Rep 5:9232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson LM, Wong MMK, Vowles J, Cowley SA, Becker EBE (2018) A simplified method for generating Purkinje cells from human-induced pluripotent stem cells. Cerebellum (London, England) 17(4):419–427

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Bao XF, Zhang C, Zhang QL (1991) Fetal tissue grafts for cerebellar atrophy. Chin Med J (Engl) 104(3):198–203

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Cendelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cendelin, J., Purkartova, Z. (2023). Grafting. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_109

Download citation

Publish with us

Policies and ethics