Skip to main content

Ataxia in Multiple Sclerosis

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

It is well known that the cerebellum is commonly affected in patients with multiple sclerosis (MS), thus making everyday life activities such as walking or picking up objects extremely difficult for patients with advanced stages. Previous reports have discovered that as many as four out of five MS patients experience cerebellar ataxia, which is characterized by the inability to coordinate movements and maintain balance. Unfortunately, no treatment is currently available to effectively treat patient’s symptoms. What makes ataxia particularly challenging for rehabilitation experts is that it can cause widespread damage to both motor and sensory mechanisms of the central nervous system, thus the symptoms that patients exhibit vary tremendously from person to person. As a result of cerebellar damage, MS patients are also incapable of adjusting movements to the ever-changing environment, reflecting a damaged error-based motor learning mechanism that can impede rehabilitation interventions for gait, posture, and upper-limb movements. Here, we will provide a general overview of human cerebellar function and pathophysiology of ataxia and describe how this affects specific features of motor control and motor learning. Moreover, we will discuss clinical assessments of ataxia and detail how non-invasive brain stimulation can improve the symptoms of MS patients with concurrent rehabilitation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bastian AJ, Martin TA, Keating JG, Thach WT (1996) Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 76(1):492–509

    Article  CAS  PubMed  Google Scholar 

  • Bastian AJ, Zackowski KM, Thach WT (2000) Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol 83(5):3019–3030

    Article  CAS  PubMed  Google Scholar 

  • Benussi A, Cantoni V, Manes M, Libri I, Dell’Era V, Datta A, Thomas C, Ferrari C, Di Fonzo A, Fancellu R, Grassi M, Brusco A, Alberici A, Borroni B (2021) Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia. Brain 144(8):2310–2321

    Article  PubMed  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2012) Active force perception depends on cerebellar function. J Neurophysiol 107(6):1612–1620

    Article  PubMed  Google Scholar 

  • Brown SH, Hefter H, Mertens M, Freund HJ (1990) Disturbances in human arm movement trajectory due to mild cerebellar dysfunction. J Neurol Neurosurg Psychiatry 53(4):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centonze D, Koch G, Versace V, Mori F, Rossi S, Brusa L, Grossi K, Torelli F, Prosperetti C, Cervellino A, Marfia GA, Stanzione P, Marciani MG, Boffa L, Bernardi G (2007) Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology 68(13):1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Day BL, Thompson PD, Harding AE, Marsden CD (1998) Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 121(Pt 2):357–372

    Article  PubMed  Google Scholar 

  • Dichgans J (1984) Clinical symptoms of cerebellar dysfunction and their topodiagnostical significance. Hum Neurobiol 2(4):269–279

    CAS  PubMed  Google Scholar 

  • Diedrichsen J, Verstynen T, Lehman SL, Ivry RB (2005) Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol 93(2):801–812

    Article  PubMed  Google Scholar 

  • Elzamarany E, Afifi L, El-Fayoumy NM, Salah H, Nada M (2016) Motor cortex rTMS improves dexterity in relapsing-remitting and secondary progressive multiple sclerosis. Acta Neurol Belg 116(2):145–150

    Article  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex (New York, N.Y.: 1991) 21(8):1761–1770

    Google Scholar 

  • Hallett M, Massaquoi SG (1993) Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci 20(Suppl 3):S83–S92

    PubMed  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62(1):1–30

    Article  Google Scholar 

  • Hore J, Wild B, Diener HC (1991) Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol 65(3):563–571

    Article  CAS  PubMed  Google Scholar 

  • Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex (New York, N.Y.: 1991) 21(8):1901–1909

    PubMed Central  Google Scholar 

  • Kateva V, Kmetska K, Milushev E, Milanov I (2018) Muscle spasticity and the effects of repetitive transcranial magnetic stimulation in patients with multiple sclerosis. J Neurol Neurosci 9:39

    Google Scholar 

  • Koch G (2010) Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol 25(3):159–163

    PubMed  Google Scholar 

  • Koch G, Rossi S, Prosperetti C, Codecà C, Monteleone F, Petrosini L, Bernardi G, Centonze D (2008) Improvement of hand dexterity following motor cortex rTMS in multiple sclerosis patients with cerebellar impairment. Mult Scler (Houndmills, Basingstoke, England) 14(7):995–998

    Article  CAS  Google Scholar 

  • Koch G, Esposito R, Motta C, Casula EP, Di Lorenzo F, Bonnì S, Cinnera AM, Ponzo V, Maiella M, Picazio S, Assogna M, Sallustio F, Caltagirone C, Pellicciari MC (2020) Improving visuo-motor learning with cerebellar theta burst stimulation: behavioral and neurophysiological evidence. NeuroImage 208:116424

    Article  PubMed  Google Scholar 

  • Korzhova J, Bakulin I, Sinitsyn D, Poydasheva A, Suponeva N, Zakharova M, Piradov M (2019) High-frequency repetitive transcranial magnetic stimulation and intermittent theta-burst stimulation for spasticity management in secondary progressive multiple sclerosis. Eur J Neurol 26(4):680–e44

    Article  CAS  PubMed  Google Scholar 

  • Lazzarotto A, Margoni M, Franciotta S, Zywicki S, Riccardi A, Poggiali D, Anglani M, Gallo P (2020) Selective cerebellar atrophy associates with depression and fatigue in the early phases of relapse-onset multiple sclerosis. Cerebellum (London, England) 19(2):192–200

    Article  CAS  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1987) Cerebro-cerebellar learning loops in apes and humans. Ital J Neurol Sci 8(5):425–436

    Article  CAS  PubMed  Google Scholar 

  • Manto M (2009) Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariotti C, Fancellu R, Di Donato S (2005) An overview of the patient with ataxia. J Neurol 252(5):511–518

    Article  CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119(Pt 4):1183–1198

    Article  PubMed  Google Scholar 

  • Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11(10):1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney RA, Casamento-Moran A, Celnik PA (2021) The reliability of cerebellar brain inhibition. Clin Neurophysiol 132(10):2365–2370

    Article  PubMed  Google Scholar 

  • Moroso A, Ruet A, Deloire M, Lamargue-Hamel D, Cubizolle S, Charré-Morin J, Saubusse A, Brochet B (2017) Cerebellar assessment in early multiple sclerosis. Cerebellum (London, England) 16(2):607–611

    Article  PubMed  Google Scholar 

  • Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Ouallet JC, Cubizolle S, Charré-Morin J, Saubusse A, Tourdias T, Dousset V, Brochet B (2018) Preliminary evidence of the cerebellar role on cognitive performances in clinically isolated syndrome. J Neurol Sci 385:1–6

    Article  PubMed  Google Scholar 

  • Rocca MA, Pagani E, Absinta M, Valsasina P, Falini A, Scotti G, Comi G, Filippi M (2007) Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 69(23):2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Labrada R, Velázquez-Perez L, Ochoa NC, Polo LG, Valencia RH, Cruz GS, Montero JM, Laffita-Mesa JM, Mederos LE, Zaldívar YG, Parra CT, Acosta AP, Mariño TC (2011) Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov Disord 26(2):347–350

    Article  PubMed  Google Scholar 

  • Saini S, DeStefano N, Smith S, Guidi L, Amato MP, Federico A, Matthews PM (2004) Altered cerebellar functional connectivity mediates potential adaptive plasticity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 75(6):840–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salcı Y, Fil A, Keklicek H, Çetin B, Armutlu K, Dolgun A, Tuncer A, Karabudak R (2017) Validity and reliability of the International Cooperative Ataxia Rating Scale (ICARS) and the Scale for the Assessment and Rating of Ataxia (SARA) in multiple sclerosis patients with ataxia. Mult Scler Relat Disord 18:135–140

    Article  PubMed  Google Scholar 

  • Şan AU, Yılmaz B, Kesikburun S (2019) The effect of repetitive transcranial magnetic stimulation on spasticity in patients with multiple sclerosis. J Clin Neurol (Seoul, Korea) 15(4):461–467

    Article  Google Scholar 

  • Schlerf JE, Galea JM, Bastian AJ, Celnik PA (2012) Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci 32(34):11610–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlerf JE, Galea JM, Spampinato D, Celnik PA (2015) Laterality differences in cerebellar-motor cortex connectivity. Cereb Cortex (New York, N.Y.: 1991) 25(7):1827–1834

    Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Spampinato D, Celnik P (2018) Deconstructing skill learning and its physiological mechanisms. Cortex 104:90–102

    Article  PubMed  Google Scholar 

  • Spampinato D, Celnik P (2021) Multiple motor learning processes in humans: defining their neurophysiological bases. Neuroscientist 27(3):246–267

    Article  PubMed  Google Scholar 

  • Sutton R, Barto A (1999) Reinforcement learning. MIT Press

    Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    Article  CAS  PubMed  Google Scholar 

  • Therrien AS, Wolpert DM, Bastian AJ (2016) Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain 139(Pt 1):101–114

    Article  PubMed  Google Scholar 

  • Topka H, Konczak J, Dichgans J (1998) Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics. Exp Brain Res 119(4):483–492

    Article  CAS  PubMed  Google Scholar 

  • Tramontano M, Grasso MG, Soldi S, Casula EP, Bonnì S, Mastrogiacomo S, D’Acunto A, Porrazzini F, Caltagirone C, Koch G (2020) Cerebellar intermittent theta-burst stimulation combined with vestibular rehabilitation improves gait and balance in patients with multiple sclerosis: a preliminary double-blind randomized controlled trial. Cerebellum (London, England) 19(6):897–901

    Article  PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98(1):54–62

    Article  PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37(6):703–713

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, Kanazawa I (1997) Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol 104(5):453–458

    Article  CAS  PubMed  Google Scholar 

  • Vilis T, Hore J (1977) Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol 40(5):1214–1224

    Article  CAS  PubMed  Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21(9):370–375

    Article  CAS  PubMed  Google Scholar 

  • Wilkins A (2017) Cerebellar dysfunction in multiple sclerosis. Front Neurol 8:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Yabe I, Matsushima M, Soma H, Basri R, Sasaki H (2008) Usefulness of the scale for assessment and rating of ataxia (SARA). J Neurol Sci 266(1–2):164–166

    Article  PubMed  Google Scholar 

  • Yelnik A, Bonan I (2008) Clinical tools for assessing balance disorders. Neurophysiol Clin 38(6):439–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, G., Spampinato, D.A. (2023). Ataxia in Multiple Sclerosis. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_102

Download citation

Publish with us

Policies and ethics