Skip to main content

Assessing the Pyroclastic Density Current Hazards at Merapi: From Field Data to Numerical Simulations and Hazard Maps

  • Chapter
  • First Online:
Merapi Volcano

Abstract

Merapi is considered as the most active and the most frequently eruptive volcano in Indonesia and is responsible for more than 5200 casualties since the eighteenth century, mainly caused by pyroclastic density currents (PDCs). Although eruptions are predominated by gravitational dome-collapse events and small explosions of VEI < 3, some PDCs associated with larger explosive events repeatedly reached distances up to 15–20 km from the summit during the last 200 years. PDC hazard mapping in Indonesia is traditionally based on the maximum extent of PDCs as derived from previous eruptions. The potential hazard of long-runout, widespread high-energy PDCs able to spread across densely populated interfluve (non-valley) and distal regions is now considered the most challenging component of the PDC hazard mapping at Merapi. PDC hazard modelling approaches have developed and diversified in several ways and can be subdivided into either deterministic (i.e. scenario-based) or probabilistic types. The depth-averaged modelling approach seems to be suitable for the simulation of flows and surges generated by dome collapses, the most common type of PDCs at Merapi. However, regardless of the modelling approach chosen, simulation results should always be interpreted carefully and, if integrated into a hazard plan, done with expert advice. In doing this, the use of well-constrained geological data, validation metrics and statistical approaches such as those described here can provide valuable insight and assist in the PDC hazard analysis process. Outcomes of such modelling efforts could provide the basis for establishing an interpretation framework and defining the ‘best practices’ to conduct rigorous PDC hazard assessments. Such guidelines could be widely distributed to correctly inform and advise geological surveys worldwide about the breadth and depth of understanding of methodologies and procedures currently available for undertaking robust PDC hazard assessments at other active volcanoes like Merapi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurachman EK, Bourdier JL, Voight B, Kelfoun K (2000) Nuées ardentes of 22 November 1994 at Merapi Volcano, Indonesia. J Volcanol Geotherm Res 100:345–361

    Article  Google Scholar 

  • Andreastuti SD (1999) Stratigraphy and geochemistry of Merapi volcano, Central Java, Indonesia: implication for assessment of volcanic hazards. PhD thesis, The University of Auckland, New Zealand

    Google Scholar 

  • Aisyah N, Sumarti S, Sayudi DS, Budi-Santoso A, Muzani M, Dwiyono S, Sunarto, Kurniadi (2010) Aktivitas G. Merapi period September–December 2010 (Erupsi G. Merapi 26 October–7 November 2010), Bull Berkala Merapi 07/03

    Google Scholar 

  • Badan Nasional Penanggulangan Bencana (BNPB), Indonesia (2011) Rencana aksi rehabilitasi dan rekonstruksi wilayah pasca bencana erupsi Gunung Merapi di Provinsi D.I. Yogyakarta dan Provinsi Jawa Tengah 2011–2013 (The action plan of post-disaster rehabilitation and reconstruction of Merapi volcano eruption in Yogyakarta and Central Java Provinces, 2011–2013). BAPPENAS and BNPB, Jakarta, p 205

    Google Scholar 

  • Badan Pusat Statistik (BPS), Indonesia (2011) Population of Indonesia—result of population census 2010. BPS No. 04110.1202, p 706

    Google Scholar 

  • Badan Standardisasi Nasional (BSN), Indonesia (1998) SNI 13, 4689-1998, Penyusunan peta kawasan rawan bencana gunung api (Preparation of maps of volcanic hazard-prone areas), Badan Standardisasi Nasional, p 23

    Google Scholar 

  • Bardintzeff JM (1984) Merapi Volcano (Java, Indonesia) and Merapi-type Nuées Ardentes. Bull Volcanol 47(3):433–446

    Article  Google Scholar 

  • Bayarri M, Berger JO, Calder ES, Dalbey K, Lunagomez S, Patra AK, Pitman EB, Spiller ET, Wolpert RL (2009) Using statistical and computer models to quantify volcanic hazards. Technometrics 51(4):402–413

    Article  Google Scholar 

  • Beget JE, Limke AJ (1988) Two-dimensional kinematic and rheological modelling of the 1912 pyroclastic flow, Katmai, Alaska. Bull Volcanol 56:148–160

    Article  Google Scholar 

  • Berthommier P, Bahar I, Boudon G, Camus G, Gourgaud A, Lajoie J, Vincent P-M (1992) Le Merapi et ses eruptions: importance des mecanismes phreatomagmatiques. Bull Soc Geol Fr 5:635–644

    Google Scholar 

  • BGVN (2007) Smithsonian Institution, Washington DC, 32:2

    Google Scholar 

  • Boudon G, Camus G, Gourgaud A, Lajoie J (1993) The 1984 nuée ardente deposits of Merapi volcano, Central Java, Indonesia: stratigraphy, textural characteristics, and transport mechanisms. Bull Volcanol 55:327–342

    Article  Google Scholar 

  • Bourdier JL, Abdurachman E (2001) Decoupling of small-volume pyroclastic flows and related hazards at Merapi volcano, Indonesia. Bull Volcanol 63(5):309–325

    Article  Google Scholar 

  • Cagnoli B, Piersanti A (2017) Combined effects of grain size, flow volume and channel width on geophysical flow mobility: three-dimensional discrete element modelling of dry and dense flows of angular rock fragments. Solid Earth 8:177–188

    Article  Google Scholar 

  • Charbonnier SJ, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982

    Article  Google Scholar 

  • Charbonnier SJ (2009) The dynamics and hazards of small-volume pyroclastic flows: a case study of the 2006 eruption of Merapi volcano, Java, Indonesia. PhD Dissertation, Keele University, United Kingdom, p 347

    Google Scholar 

  • Charbonnier SJ, Gertisser R (2011) Deposit architecture and dynamics of the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia. Sedimentology 58(6):1573–1612

    Article  Google Scholar 

  • Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231–232:87–108

    Article  Google Scholar 

  • Charbonnier SJ, Germa A, Connor CB, Gertisser R, Preece K, Komorowski JC, Lavigne F, Dixon TH, Connor LJ (2013) Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery analysis, field investigations and numerical simulations. J Volcanol Geotherm Res 261:295–315

    Article  Google Scholar 

  • Charbonnier SJ, Connor CB, Connor LJ, Ogburn S, Calder E, Gertisser R (2016) Validation of depth-averaged models for pyroclastic density currents (PDCs): examples from Merapi and Soufriere Hills volcanoes. Abstract, Uncertainty in Geoscience Workshop, Buffalo, USA, 15–18 March 2016

    Google Scholar 

  • Charbonnier SJ, Connor CB, Connor LJ, Sheridan MF, Oliva-Hernandez JP, Richardson JA (2018) Modeling the October 2005 lahars at Panabaj (Guatemala). Bull Volcanol: 80:4

    Google Scholar 

  • Cole PD, Neri A, Baxter PJ (2015) Hazards from pyroclastic density currents. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd ed. Academic Press, New York, pp 943–956

    Google Scholar 

  • Crandell DR, Booth B, Kazumadinata K, Shimozuru D, Walker GPL, Westercamp D (1984) Source book for volcanic hazards zonation. UNESCO, p 97

    Google Scholar 

  • Cronin SJ, Lube G, Sayudi DS, Sumarti S, Surono S (2013) Insights into the October–November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits. J Volcanol Geotherm Res 261:244–259

    Article  Google Scholar 

  • CVGHM (2006) In: Ratdomopurbo et al. (eds) Prekursor erupsi gunung Merapi (Precursors of Merapi eruptions). Geological Agency, Energy and Mineral Resources Department, p 87

    Google Scholar 

  • CVGHM (2016) Erupsi Merapi 2010 (2010 Merapi eruption). Badan Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Geological Agency, Energy and Mineral Resources Department, vol 1, p 231

    Google Scholar 

  • Dalbey K, Patra AK, Pitman EB, Bursik MI, Sheridan MF (2008) Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J Geophys Res 113:B05203

    Google Scholar 

  • Dartevelle S, Rose WI, Stix J, Kelfoun K, Vallance JW (2004) Numerical modelling of geophysical granular flows: 2. Computer simulations of plinian clouds and pyroclastic flows and surges. Geochem Geophys Geosys 5(8):1–36

    Google Scholar 

  • Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RS, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills volcano, Montserrat: an important volcanic hazard. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. Mem Geol Soc London, vol 21, pp 263–280

    Google Scholar 

  • Dufek J (2016) The fluid mechanics of pyroclastic density currents. Ann Rev Fluid Mech 48:459–485

    Article  Google Scholar 

  • Esposti Ongaro T, Neri A, Menconi G, de Michieli VM, Marianelli P, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178:378–396

    Article  Google Scholar 

  • Esposti Ongaro T, Clarke AB, Voight B, Neri A, Widiwijayanti C (2012) Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J Geophys Res 117:535–538

    Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Gertisser R, Cassidy NJ, Charbonnier SJ, Nuzzo L, Preece K (2012) Overbank block-and-ash flow deposits and the impact of valley-derived, unconfined flows on populated areas at Merapi volcano, Java, Indonesia. Nat Haz 60:623–648

    Article  Google Scholar 

  • Gertisser R, del Marmol M-A, Newhall C, Preece K, Charbonnier S, Andreastuti S, Handley H, Keller J (2023) Geological history, chronology and magmatic evolution of Merapi. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 137–193

    Google Scholar 

  • Haddad B, Pastor M, Palacios D, Muñoz-Salinas E (2010) A SPH integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation. Eng Geol 114:312–329

    Article  Google Scholar 

  • Hadisantono RD, Andreastuti SD, Abdurrachman EK, Sayudi DS, Nurnusanto I, Martono A, Sumpena AD, dan Muzani M (2002) Peta Kawasan Rawan Bencana, Jawa Tengah dan Daerah Istimewa Yogyakarta; Bandung: Pusat Vulkanologi dan Mitigasi Bencana Geologi

    Google Scholar 

  • Hartmann MA (1935) Die Ausbrüche des G. Merapi (Mittel-Java) bis zum Jahre 1883. Neues Jahrb Für Mineral 75:127–162

    Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comp Geosc 35:978–992

    Article  Google Scholar 

  • Itoh H, Takahama J, Takahashi M, Miyamoto K (2000) Hazard estimation of the possible pyroclastic flow disasters using numerical simulation related to the 1994 activity at Merapi Volcano. J Volcanol Geotherm Res 100:503–516

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Amer Bull 110:972–984

    Article  Google Scholar 

  • Jenkins S, Komorowski J-C, Baxter PJ, Spence R, Picquout A, Lavigne Surono F (2013) The Merapi 2010 eruption: an interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J Volcanol Geotherm Res 261:316–329

    Article  Google Scholar 

  • Kelfoun K, Legros F, Gourgaud A (2000) A statistical study of trees damaged by the 22 November 1994 eruption of Merapi volcano (Java, Indonesia): relationships between ash-cloud surges and block-and-ash flows. J Volcanol Geotherm Res 100:379–393

    Article  Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modelling of the emplacement of Socompa rock Avalanche, Chile. J Geophys Res 110:B12202

    Article  Google Scholar 

  • Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71(9):1057–1075

    Article  Google Scholar 

  • Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J Geophys Res 116:B08209

    Google Scholar 

  • Kelfoun K (2017) A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents. J Geophys Res. https://doi.org/10.1002/2017JB014013

    Article  Google Scholar 

  • Kelfoun K, Gueugneau V, Komorowski JC, Aisyah N, Cholik N (2017) Simulation of block-and-ash flows and ash-cloud surges of the 2010 eruption of Merapi volcano with a two-fluid layer model. J Geophys Res 122. https://doi.org/10.1002/2017JB013981

  • Kemmerling GLL (1931) Beshouwingen over de hernieuwde werking van den Merapi der Vorstenlanden van December 1930. Tijdschr Kon Ned Aarddr Genoot 48(2):712–743

    Google Scholar 

  • Komorowski J-C, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geotherm Res 261(1):260–294

    Article  Google Scholar 

  • Lube G, Cronin SJ, Thouret Surono J-C (2011) Kinematic characteristics of pyroclastic density currents at Merapi and controls on their avulsion from natural and engineered channels. Geol Soc Am Bull 123(5–6):1127–1140

    Article  Google Scholar 

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–640

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716

    Article  Google Scholar 

  • McEwen AS, Malin MC (1989) Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast. J Volcanol Geotherm Res 37:205–231

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  • Neri A, Macedonio G (1996) Numerical simulation of collapsing volcanic columns with particles of two sizes. J Geophys Res 101:8153–8174

    Article  Google Scholar 

  • Neri A, Esposti Ongaro T, Macedonio G, Gidaspow D (2003) Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J Geophys Res 108:2202

    Google Scholar 

  • Newhall C, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, MCGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti SD, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50

    Google Scholar 

  • Neumann van Padang M (1933) De uitbarsting van den Merapi (Midden Java) in de jaren 1930–1931. Vulkanol Seismol Med 12:1–116

    Google Scholar 

  • Ogburn SE, Calder ES (2017) The relative effectiveness of empirical and physical models for simulating the dense undercurrent of pyroclastic flows under different emplacement conditions. Front Earth Sci 5:83

    Article  Google Scholar 

  • Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CG, Ratdomopurbo A (2013) Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:138–146

    Article  Google Scholar 

  • Pardyanto L, Reksowirogo LD, Mitrohartono FXS, Hardjowarsito SH (1978) Volcanic hazard map, Merapi volcano, central Java (1/100 000), Geol. Survey of Indonesia, II, 14, Ministry of Mines, Bandung

    Google Scholar 

  • Patra AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik MI, Rupp B, Webber A, Stinton AJ, Namikawa LM, Renschler CS (2005) Parallel adaptive simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–22

    Article  Google Scholar 

  • Purbo-Hadiwijoyo MM, Suryo I (1980) Distribution pattern of the Merapi volcanic debris, South Central Java. In: V.S.I. (ed), Volcanologi Merapi, pp 276–290

    Google Scholar 

  • Ratdomopurbo A, Beauducel F, Subandriyo J, Agung Nandaka IGM, Newhall CG, Suharna, Sayudi DS, Suparwaka H, Sunarta (2013) Overview of the 2006 eruption of Mt. Merapi. J Volcanol Geotherm Res 261:87–97

    Google Scholar 

  • Rossano S, Mastrolorenzo G, De Natale G (2004) Numerical simulation of pyroclastic density currents on Campi Flegrei topography: a tool for statistical hazard estimation. J Volcanol Geotherm Res 132:1–14

    Article  Google Scholar 

  • Salvatici T, Di Roberto A, Di Traglia F, Bisson M, Morelli S, Fidolini F, Bertagnini A, Pompilio M, Hungr O, Casagli N (2016) From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy). Geomorphology 273:93–106

    Article  Google Scholar 

  • Sandri L, Tierz P, Costa A, Marzocchi W (2018) Probabilistic hazard from pyroclastic density currents in the Neapolitan area (Southern Italy). J Geophys Res 123:3474–3500

    Article  Google Scholar 

  • Saucedo R, Macias JL, Sheridan MF, Bursik MI, Komorowski JC (2005) Modelling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 139:103–115

    Article  Google Scholar 

  • Sayudi DS, Aisyah N, Juliani Dj, Muzani M (2010) Peta Kawasan Rawan Bencana Gunungapi Merapi, Jawa Tengah dan Daerah Istimewa Yogyakarta 2010 (Merapi Hazard Map, Central Java and Yogyakarta Special Region Provinces). Center for Volcanology and Geological Hazard Mitigation (CVGHM), Bandung

    Google Scholar 

  • Schilling SP (1998) LAHARZ: GIS programs for automated mapping of lahar-inundation zones. US Geol Survey, Open-file Report 98–638

    Google Scholar 

  • Schwarzkopf LM, Schmincke H-U, Troll VR (2002) Friction marks on blocks from pyroclastic flows at the Soufriere Hills volcano, Montserrat: implications for flow mechanisms: comment. Geology 30:190–190

    Article  Google Scholar 

  • Schwarzkopf LM, Schmincke H-U, Cronin SJ (2005) A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flows. J Volcanol Geotherm Res 139:117–134

    Article  Google Scholar 

  • Scott WE (1989) Volcanic-hazards zonation and long-term forecasts. In: Tilling RI (Ed.) Volcanic hazards short course presented at 28th International geology congress AGU, Washigton DC, pp 25–49

    Google Scholar 

  • Siswowidjoyo S, Suryo I, Yokoyama I (1995) Magma eruption rates of Merapi volcano, Central Java, Indonesia, during one century (1890–1992). Bull Volcanol 57:111–116

    Article  Google Scholar 

  • Sheridan MF, Malin MC (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruption: Vulcano, Lipari, and Vesuvius. J Volcanol Geotherm Res 17:187–202

    Article  Google Scholar 

  • Sheridan MF, Patra AK, Dalbey K, Hubbard B (2010) Probabilistic digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D. Geol Soc Am Spec Paper 464:1–11

    Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the World, 3rd ed. University of California Press, p 568

    Google Scholar 

  • Spiller ET, Bayarri M, Berger JO, Calder ES, Patra AK, Pitman EB, Wolpert RL (2014) Automating emulator construction for geophysical hazard maps. SIAM/ASA J Uncert Quant 2(1):126–152

    Article  Google Scholar 

  • Solikhin A, Thouret J-C, Liew SC, Gupta A, Sayudi DS, Oelher J-F, Kassouk Z (2015) High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi volcano eruption and their impact. Bull Volcanol 77(20)

    Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomar RME, Carey SN (1991) Sedimentation of tephra fall deposits. Bull Volcanol 54:685–695

    Article  Google Scholar 

  • Subandriyo, Gertisser R, Aisyah N, Humaida H, Preece K, Charbonnier S, Budi-Santoso A, Handley H, Sumarti S, Sayudi DS, Nandaka IGMA, Wibowo HE (2023) An overview of the large-magnitude (VEI 4) eruption of Merapi in 2010. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 353–407

    Google Scholar 

  • Surono JP, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135

    Article  Google Scholar 

  • Suryo I, Clarke MCG (1985) The occurrence and mitigation of volcanic hazards in Indonesia as exemplified at the Mount Merapi, Mount Kelud and Mount Galunggung volcanoes. Q J Eng Geol Lond 18:78–98

    Google Scholar 

  • Tierz P, Sandri L, Costa A, Zaccarelli L, Di Vito MA, Sulpizio R, Marzocchi W (2016) Suitability of energy cone for probabilistic volcanic hazard assessment: Validation tests at Somma Vesuvius and Campi Flegrei (Italy). Bull Volcanol 78(11):79

    Article  Google Scholar 

  • Thouret J-C, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100:479–502

    Article  Google Scholar 

  • Tonini R, Sandri L, Thompson MA (2015) PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps. Comp Geosci 79:38–46

    Article  Google Scholar 

  • Valentine GA, Wohletz KH, Kieffer SW (1992) Effects of topography on facies and compositional zonations in caldera-related ignimbrites. Geol Soc Am Bull 104:154–165

    Article  Google Scholar 

  • Voight B, Constantine EK, Sismowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  • Wadge G (2009) Assessing the pyroclastic flow hazards from dome collapse at Soufriere Hills Volcano, Montserrat. In: Thordarsson T, Self S, Larsen G, Rowlands SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker. Geol Soc Lond Spec Pub, vol 2, pp 211–224

    Google Scholar 

  • Walker GPI (1973) Explosive volcanic eruptions, a new classification scheme. Geologische Rundsch 62:431–446

    Article  Google Scholar 

  • Widiwijayanti C, Voight B, Hidayat D, Schilling SP (2009) Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges. Bull Volcanol 71:687–703

    Article  Google Scholar 

  • Wohletz KH, McGetchin TR, Sandford MT, Jones EM (1984) Hydrodynamic aspects of caldera-forming eruptions: numerical models. J Geophys Res 89:8269–8285

    Article  Google Scholar 

  • Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336

    Article  Google Scholar 

  • Yamashita S, Miyamoto K (1993) Model of pyroclastic flow and its numerical simulation, sediment problems—strategies for monitoring, prediction and control. IAHS Publ 217:67–74

    Google Scholar 

Download references

Acknowledgements

Field work following the 2010 eruption was funded through the National Science Foundation (NSF) RAPID grant 1114852. SJC thanks Laura Connor for her assistance with the Titan2D and VolcFlow probabilistic modelling. The authors would like to thank our Indonesian colleagues at the Center of Volcanology and Geological Hazard Mitigation (CVGHM) at the Merapi Volcano Observatory, Yogyakarta, for fruitful discussions about the 2006 and 2010 eruptions and PDC hazard assessment at Merapi volcano. We also thank the editor Ralf Gertisser and reviewer Lucia Capra for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain J. Charbonnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charbonnier, S.J., Kelfoun, K., Widiwijayanti, C., Sayudi, D.S., Putra, R. (2023). Assessing the Pyroclastic Density Current Hazards at Merapi: From Field Data to Numerical Simulations and Hazard Maps. In: Gertisser, R., Troll, V.R., Walter, T.R., Nandaka, I.G.M.A., Ratdomopurbo, A. (eds) Merapi Volcano. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-15040-1_16

Download citation

Publish with us

Policies and ethics