Skip to main content

Perceptual Evaluation of the Quantization Level of a Vibrotactile Signal

  • Conference paper
  • First Online:
Haptic and Audio Interaction Design (HAID 2022)

Abstract

The quantization of vibrotactile signals is generally performed in the same way as for audio signals. However, the specificities of the sense of touch may allow other choices for the digitization of vibrotactile signals, in particular on the number of quantization bits. The objective of this paper is to define the minimal number of quantization bits, ensuring an imperceptible digitization to touch. For this, a perceptual study is conducted on a set of signals for several quantization levels. For each signal, the total perceptible harmonic distortion (PTHD), taking into account the vibrotactile thresholds, is defined and calculated. PTHD seems to predict a threshold from which the quantization level of the vibrotactile signals is perceptible. This result was obtained by a perceptive study carried out on 29 subjects from pairwise comparison with vibrotactile signals emitted by an electrodynamic transducer placed in a wristband. If the PTHD of a vibrotactile signal is less than 35 dB, the digitization effect will be imperceptible. This suggests that 8-bit DACs may be sufficient to generate vibrotactile signals without the digitization effects being perceptible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.mouser.com/c/semiconductors/data-converter-ics/.

  2. 2.

    www.focusrite.com/en/usb-audio-interface/scarlett/scarlett-2i2.

  3. 3.

    www.novationmusic.com/en/launch/launchpad-x.

  4. 4.

    www.daytonaudio.com/product/1173.

  5. 5.

    www.audiophonics.fr/en/search?search_query=FX-AUDIO+FX1002A+.

  6. 6.

    www.micro-epsilon.com/download/manuals/man–optoNCDT-1750–en.pdf.

References

  1. Ammirante, P., Russo, F.A., Good, A., Fels, D.I.: Feeling voices. PLoS ONE 8(1), e53585 (2013). https://doi.org/10.1371/journal.pone.0053585

  2. Balestrieri, E., Rapuano, S.: Defining DAC performance in the frequency domain. Measurement 40(5), 463–472 (2007). https://doi.org/10.1016/j.measurement.2006.12.004

    Article  Google Scholar 

  3. Barlow, S.: Adaptive vibrotactile threshold estimation of the glabrous hand and perioral face following MCA stroke. Biomed. J. Sci. Tech. Res. 23 (2019). https://doi.org/10.26717/BJSTR.2019.23.003899

  4. Bennett, W.R.: Spectra of quantized signals. Bell Syst. Tech. J. 27(3), 446–472 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01340.x

  5. Birnbaum, D., Wanderley, M.: A systematic approach to musical vibrotactile feedback. In: International Computer Music Conference, ICMC 2007 (2011)

    Google Scholar 

  6. Blagouchine, I.V., Moreau, E.: Analytic method for the computation of the total harmonic distortion by the Cauchy method of residues. IEEE Trans. Commun. 59(9), 2478–2491 (2011). https://doi.org/10.1109/tcomm.2011.061511.100749

  7. Bukkapatnam, A.T., Depalle, P., Wanderley, M.M.: Defining a vibrotactile toolkit for digital musical instruments: characterizing voice coil actuators, effects of loading, and equalization of the frequency response. J. Multimodal User Interfaces 14(3), 285–301 (2020). https://doi.org/10.1007/s12193-020-00340-0

  8. Consigny, Q., Paté, A., Le Carrou, J.L., Genevois, H.: Caractérisation par l’étude de l’impédance électrique d’un transducteur électro-dynamique mécaniquement chargé par différents matériaux. In: Proceedings of the Congrès Français d’Acoustique, Marseille, France (2022). (in French)

    Google Scholar 

  9. Frisson, C., Decaudin, J., Sanz Lopez, M., Pietrzak, T.: Printgets: an open-source toolbox for designing vibrotactile widgets with industrial-grade printed actuators and sensors. In: International Workshop on Haptic and Audio Interaction Design, Montreal, Canada (2020)

    Google Scholar 

  10. Islam, M.S., Lim, S.: Vibrotactile feedback in virtual motor learning: a systematic review. Appl. Ergon. 101, 103694 (2022). https://doi.org/10.1016/j.apergo.2022.103694

    Article  Google Scholar 

  11. Jones, L.A., Sarter, N.B.: Tactile displays: guidance for their design and application. Hum. Fact. J. Hum. Fact. Ergon. Soc. 50(1), 90–111 (2008). https://doi.org/10.1518/001872008x250638

  12. Kim, M., Abdulali, A., Jeon, S.: Rendering vibrotactile flow on backside of the head: initial study. In: 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE (2018). https://doi.org/10.1109/gem.2018.8516545

  13. Mirzaei, M., Kán, P., Kaufmann, H.: Effects of using vibrotactile feedback on sound localization by deaf and hard-of-hearing people in virtual environments. Electronics 10(22), 2794 (2021). https://doi.org/10.3390/electronics10222794

    Article  Google Scholar 

  14. Pantera, L., Hudin, C.: Multitouch vibrotactile feedback on a tactile screen by the inverse filter technique: vibration amplitude and spatial resolution. IEEE Trans. Haptics 13(3), 493–503 (2020). https://doi.org/10.1109/toh.2020.2981307

  15. Pongrac, H.: Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions. Multimedia Syst. 13(4), 297–307 (2007). https://doi.org/10.1007/s00530-007-0105-x

    Article  Google Scholar 

  16. Salzer, Y., Oron-Gilad, T., Ronen, A., Parmet, Y.: Vibrotactile “on-thigh” alerting system in the cockpit. Hum. Fact. J. Hum. Fact. Ergon. Soc. 53(2), 118–131 (2011). https://doi.org/10.1177/0018720811403139

  17. Shmilovitz, D.: On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans. Power Deliv. 20(1), 526–528 (2005). https://doi.org/10.1109/tpwrd.2004.839744

  18. Terenti, M., Vatavu, R.D.: Measuring the user experience of vibrotactile feedback on the finger, wrist, and forearm for touch input on large displays. In: CHI Conference on Human Factors in Computing Systems Extended Abstracts. ACM (2022). https://doi.org/10.1145/3491101.3519704

  19. Treutwein, B., Strasburger, H.: Fitting the psychometric function. Percept. Psychophys. 61(1), 87–106 (1999). https://doi.org/10.3758/bf03211951

  20. Verrillo, R.T.: Psychophysics of vibrotactile stimulation. J. Acoust. Soc. Am. 77(1), 225–232 (1985). https://doi.org/10.1121/1.392263

  21. Verrillo, R.T.: Vibration sensation in humans. Music. Percept. 9(3), 281–302 (1992). https://doi.org/10.2307/40285553

    Article  Google Scholar 

  22. Wilska, A.: On the vibrational sensitivity in different regions of the body surface. Acta Physiologica Scandinavica 31(2–3), 285–289 (1954). https://doi.org/10.1111/j.1748-1716.1954.tb01139.x

  23. Yoo, Y., Yoo, T., Kong, J., Choi, S.: Emotional responses of tactile icons: effects of amplitude, frequency, duration, and envelope. In: 2015 IEEE World Haptics Conference (WHC) (2015). https://doi.org/10.1109/whc.2015.7177719

Download references

Acknowledgements

This work is funded by a grant from the French National Research Agency (ANR) as part of the “Staccato” Project (ANR–19–CE38–0008–01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Consigny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Consigny, Q., Paté, A., Le Carrou, JL. (2022). Perceptual Evaluation of the Quantization Level of a Vibrotactile Signal. In: Saitis, C., Farkhatdinov, I., Papetti, S. (eds) Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer, Cham. https://doi.org/10.1007/978-3-031-15019-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15019-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15018-0

  • Online ISBN: 978-3-031-15019-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics