Skip to main content

Model-Based Testing of Internet of Things Protocols

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2022)

Abstract

Internet of Things (IoT) is a popular term to describe systems/devices that connect and interact with each other through a network, e.g., the Internet. These devices communicate with each other via a communication protocol, such as Zigbee or Bluetooth Low Energy (BLE), the subject of this paper. Communication protocols are notoriously hard to implement correctly and a large set of test-cases is needed to check for conformance to the standard. Many of us have encountered communication problems in practice, such as random mobile phone disconnects, difficulty obtaining a Bluetooth connection, etc. In this paper, we research the application of industry strength Model-Based Testing (MBT) within the IoT domain. This technique contributes to higher quality specifications and more efficient and more thorough conformance testing. We show how we can model part of the BLE protocol specification using the Axini Modeling Platform (AMP). Based on the model, AMP is then able to automatically test the conformance of a BLE device. With this approach, we found specification flaws in the official BLE specifications as well as conformance errors on a certified BLE system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.bluetooth.com/.

  2. 2.

    https://www.bluetooth.com/.

  3. 3.

    https://github.com/pybluez/pybluez.

  4. 4.

    https://launchstudio.bluetooth.com/ListingDetails/3524.

References

  1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based testing as a service for IoT platforms. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 727–742. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_55

    Chapter  Google Scholar 

  2. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (IoT) communication protocols. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690. IEEE (2017)

    Google Scholar 

  3. Aziz, B.: A formal model and analysis of an IoT protocol. Ad Hoc Netw. 36, 49–57 (2016)

    Article  Google Scholar 

  4. Bernard, E., et al.: Model-based testing from UML models. INFORMATIK 2006-Informatik für Menschen-Band 2, Beiträge der 36. Jahrestagung der Gesellschaft für Informatik eV (GI) (2006)

    Google Scholar 

  5. Binder, R.V., Legeard, B., Kramer, A.: Model-based testing: where does it stand? Commun. ACM 58(2), 52–56 (2015)

    Article  Google Scholar 

  6. Bluetooth SIG: Core specification 4.2 (2014). https://www.bluetooth.com/specifications/specs/core-specification-4-2/. Accessed 28 June 2021

  7. Bures, M., Cerny, T., Ahmed, B.S.: Internet of things: current challenges in the quality assurance and testing methods. In: Kim, K.J., Baek, N. (eds.) ICISA 2018. LNEE, vol. 514, pp. 625–634. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1056-0_61

    Chapter  Google Scholar 

  8. Dalal, S.R., et al.: Model-based testing in practice. In: Proceedings of the 21st International Conference on Software Engineering, pp. 285–294 (1999)

    Google Scholar 

  9. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-based testing approaches: a systematic review. In: Proceedings of the 1st ACM International Workshop on Empirical Assessment of Software Engineering Languages and Technologies: Held in Conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007, pp. 31–36 (2007)

    Google Scholar 

  10. Elnashar, A.: IoT evolution towards a super-connected world. arXiv preprint arXiv:1907.02589 (2019)

  11. Ergen, S.C.: ZigBee/IEEE 802.15.4 summary. UC Berkeley, 10 September 2004

    Google Scholar 

  12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4_1

    Chapter  Google Scholar 

  13. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_3

    Chapter  Google Scholar 

  14. Huang, A.S., Rudolph, L.: Bluetooth Essentials for Programmers. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Hwang, J., Aziz, A., Sung, N., Ahmad, A., Le Gall, F., Song, J.: AUTOCON-IoT: automated and scalable online conformance testing for IoT applications. IEEE Access 8, 43111–43121 (2020)

    Article  Google Scholar 

  16. Incki, K., Ari, I.: Observing interoperability of IoT systems through model-based testing. In: Fortino, G., et al. (eds.) InterIoT/SaSeIoT -2017. LNICST, vol. 242, pp. 60–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93797-7_8

    Chapter  Google Scholar 

  17. Statista Inc.: Internet of things (IoT) active device connections installed base worldwide from 2015 to 2025* (2020). https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/

  18. Janssen, S.: Transforming source code into symbolic transition systems for practical model-based testing (2017)

    Google Scholar 

  19. Kim, H., et al.: IoT-TaaS: towards a prospective IoT testing framework. IEEE Access 6, 15480–15493 (2018)

    Article  Google Scholar 

  20. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic automated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 84–100. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44854-3_6

    Chapter  Google Scholar 

  21. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6_8

    Chapter  Google Scholar 

  22. Malik, B.H., et al.: IoT testing-as-a-service: a new dimension of automation. Int. J. Adv. Comput. Sci. Appl. 10(5) (2019)

    Google Scholar 

  23. Marinissen, E.J., et al.: IoT: source of test challenges. In: 2016 21th IEEE European Test Symposium (ETS), pp. 1–10. IEEE (2016)

    Google Scholar 

  24. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841_37

    Chapter  Google Scholar 

  25. Pretschner, A., et al.: One evaluation of model-based testing and its automation. In: Proceedings of the 27th International Conference on Software Engineering, pp. 392–401 (2005)

    Google Scholar 

  26. Saleem, J., Hammoudeh, M., Raza, U., Adebisi, B., Ande, R.: IoT standardisation: challenges, perspectives and solution. In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, pp. 1–9 (2018)

    Google Scholar 

  27. Schieferdecker, I.: Model-based testing. IEEE Softw. 29(1), 14 (2012)

    Article  Google Scholar 

  28. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

    Article  Google Scholar 

  29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active automata learning. In: 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 276–287. IEEE (2017)

    Google Scholar 

  30. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8_1

    Chapter  Google Scholar 

  31. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

    Article  Google Scholar 

  32. Vorakulpipat, C., Rattanalerdnusorn, E., Thaenkaew, P., Hai, H.D.: Recent challenges, trends, and concerns related to IoT security: an evolutionary study. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 405–410. IEEE (2018)

    Google Scholar 

  33. Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst. 25(9), 1101 (2012)

    Article  Google Scholar 

  34. Yoneyama, J., Artho, C., Tanabe, Y., Hagiya, M.: Model-based network fault injection for IoT protocols. In: Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering, pp. 201–209. SCITEPRESS-Science and Technology Publications, Lda (2019)

    Google Scholar 

  35. Ziegler, S., Fdida, S., Viho, C., Watteyne, T.: F-interop – online platform of interoperability and performance tests for the internet of things. In: Mitton, N., Chaouchi, H., Noel, T., Watteyne, T., Gabillon, A., Capolsini, P. (eds.) InterIoT/SaSeIoT -2016. LNICST, vol. 190, pp. 49–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52727-7_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Manuel van Dommelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dommelen, X.M.v., Bijl, M.v.d., Pimentel, A. (2022). Model-Based Testing of Internet of Things Protocols. In: Groote, J.F., Huisman, M. (eds) Formal Methods for Industrial Critical Systems. FMICS 2022. Lecture Notes in Computer Science, vol 13487. Springer, Cham. https://doi.org/10.1007/978-3-031-15008-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15008-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15007-4

  • Online ISBN: 978-3-031-15008-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics