Skip to main content

Greenhouse Gas Emissions and Mitigation Strategies in Rice Production Systems

  • Chapter
  • First Online:
Global Agricultural Production: Resilience to Climate Change

Abstract

Methane (CH4) and nitrous oxide (N2O) are the two critical greenhouse gases (GHGs) that absorb radiation, affect atmospheric chemistry, and contribute to global climate change. Rice being the second largest cultivated food crop around the world is also a leading anthropogenic source of GHG emissions from agriculture sector. It accounts for 18% CH4 and 11% N2O emissions of the total agricultural GHG additions. In the face of rising population, rice production is estimated to be increased by 40% in 2030 along with higher CH4 and N2O release to the atmosphere which needs to be reduced on priority basis. We attempted to develop a mechanistic understanding on CH4 and N2O production from rice fields and different factors influencing their emission. It has been found that modifications in traditional crop cultivation practices manifested enormous potential to minimize GHG emissions from rice fields. However changes in the existing management practices can simultaneously influence more than one gas, and their effects may be opposite. After assessing the possible mitigation options to abate CH4 and N2O emissions, it has been found that modifying irrigation and tillage practices, improving fertilizer management, using low-emitting rice varieties, incorporation of fermented cow dung and leaf manures, addition of nitrification inhibitors, and slow-release fertilizers manifested great potential to abate methane and nitrous oxide emissions. Incorporation of biochar, straw compost, and straw ash could have better results in curtailing GHG emissions compared to direct straw additions. Adoption of these proposed mitigation options singly or in combination is likely to minimize GHG emissions and helpful in sustainable rice production. However successful execution of these practices at farmer’s level demands the removal of all social, economic, educational, and political barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFOLU:

Agriculture, forestry, and other land use

CH4:

Methane

CO2:

Carbon dioxide

FAO:

Food and Agriculture Organization

GHG:

Greenhouse gas

GWP:

Global warming potential

IPCC:

Intergovernmental Panel on Climate Change

IRRI:

International Rice Research Institute

N2O:

Nitrous oxide

RFESs:

Rice field ecosystems

References

  • Adhya TK, Patanaik P, Satpathy SN, Kumaraswamy S, Sethunathan N (1998) Influences of phosphorous application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–181

    Article  CAS  Google Scholar 

  • Agnihotri S, Kulshreshtha K, Singh SN (1999) Mitigation strategy to contain methane emissions from rice-fields. Environ Monitor Assess 58:95–104

    Article  CAS  Google Scholar 

  • Ahmad S, Li CF, Dai GZ, Zhan M, Wang JP, Pan SG, Cao CG (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in Central China. Environ Sci Pollut Res 22:3342–3360

    Google Scholar 

  • Akiyama H, Yagi K, Yan X (2005) Direct N2O emissions from rice paddy fields: summary of available data. Global Biochem Cycles 19:1005

    Article  Google Scholar 

  • Ali MA, Oh JH, Kim PJ (2008) Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agric Ecosyst Environ 128:21–26

    Article  CAS  Google Scholar 

  • Ali MA, Farouque MG, Haque M, Kabir A (2012) Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. J Environ Sci Nat Resour 5:179–185

    Google Scholar 

  • Arah JRM, Smith KA (1989) Steady-state denitrification in aggregated soils: a mathematical model. J Soil Sci 40:139–149

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86. https://doi.org/10.1023/A:1004817212321230

    Article  CAS  Google Scholar 

  • Babu YJ, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42:532–541

    Article  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  Google Scholar 

  • Boeckx P, Xu X, Cleemput OV (2005) Mitigation of N2Oand CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutr Cycl Agroecosyst 72:41–49. https://doi.org/10.1007/s10705-004-7352-4

    Article  CAS  Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  CAS  Google Scholar 

  • Buresh RJ, De Datta SK (1991) Nitrogen dynamics and management in rice-legume cropping systems. Adv Agron 45:1–59

    Article  CAS  Google Scholar 

  • Buresh RJ, Dedatta SK (1990) Denitrification losses from puddled rice soils in the tropics. Biol Fertil Soils 9:1–13

    Article  Google Scholar 

  • Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Article  CAS  Google Scholar 

  • Cai ZC, Xing GX, Shen GY, Xu H, Yan XY, Tsuruta H, Yagi K, Minami K (1999) Measurements of CH4 and N20 emissions from rice paddies in Fengqiu, China. Soil Sci Plant Nutr 45(1):1–3

    Google Scholar 

  • Cai GX, Chen DL, Ding H, Pacholski A, Fan XH, Zhu ZL (2002) Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China plain. Nutr Cycl Agroecosyst 63:187–195

    Article  CAS  Google Scholar 

  • Cairo JJ, Paris JM (1988) Microbiologia de la digestion anaerobia. In: Polanco FF, García PA, Hernándo S (eds) Methanogenesis. 4th Seminario in Depuración Anaerobia de Aguas Residuales. Universidad de Valladolid. ISBN: 8477620547, pp 41–51

    Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Aerobic oxidation of methane mechanisms, bioenergetics and the ecology of associated microorganisms. Environ Sci Technol 7:1127–1138

    Google Scholar 

  • Carlson KM, Gerber JS, Mueller ND, Herrero M, GK MD, Brauman KA, Havlik P, O’Connell CS, Johnson JA, Saatchi S, West PC (2017) Greenhouse gas emissions intensity of global croplands. Nat Clim Chang 7:63–67

    Article  CAS  Google Scholar 

  • Carriger S, Vallee D (2007) More crop per drop. Rice Today 6:10–13

    Google Scholar 

  • Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange. Glob Chang Biol 11:15–27

    CAS  Google Scholar 

  • Chao CC, Chao CC (2001) Taiwanese. J Agric Chem Food Sci 39:275–283

    CAS  Google Scholar 

  • Chin KJ, Conrad R (1995) Intermediary metabolism in methanogenic paddy soils and their influences of temperature. FEMS Microbial Ecol 18:85–102

    Article  CAS  Google Scholar 

  • Chowdhary TR, Dick RP (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22

    Article  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asis CA Jr, Wassmann R, Lantin RS, Buendia LV (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cyc Agroecosys 58:37–53

    Article  CAS  Google Scholar 

  • Das K, Baruah KK (2008) Methane emission associated with anatomical and morpho-physiological characteristics of rice (Oryza sativa L.) plant. Physiol Plant 134:303–312

    Article  CAS  Google Scholar 

  • De Datta SK (1995) Nitrogen transformations in wetland rice ecosystems. Fertil Res 42:193–203

    Article  Google Scholar 

  • De Datta SK, Magnaye CP (1969) A survey of the forms and sources of fertilizer nitrogen for flooded rice. Soils Fert 32(2):103–109

    Google Scholar 

  • Denier van der Gon HAC, Breemen NV (1993) Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants. Biogeochemistry 21:177–190

    Article  CAS  Google Scholar 

  • Dong H, Yao Z, Zheng X (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101

    Article  CAS  Google Scholar 

  • Dubey SK (2005) Microbial ecology of methane emission in rice agro-ecosystem: a review. Appl Ecol Environ Res 3:1–27

    Article  Google Scholar 

  • Eichner MJ (1990) Nitrous oxide emissions from fertilized soils: summary of available data. J Environ Qual 19(2):272–280

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels JCT, van Alen T, Luesken F, Wu ML, Vande Pas-Schoonen KT, den Camp HJM O, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, MSM J, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Faiz-ul Islam S, van Groenigen JW, Jensen LS, Sander BO, de Neergaard A (2018) The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci Total Environ 612:1329–1339

    Article  Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. Publishing Management Service, Information Division, FAO, Rome

    Google Scholar 

  • FAO (2009) Food and agricultural organization of the United Nations. OECD-FAO Agricultural Outlook, Rome, pp 2011–2030

    Google Scholar 

  • FAO (2020) FAOSTAT Emissions shares, http://www.fao.org/faostat/en/#data/EM

  • Fazli P, Man HC, Shah UKM, Idris A (2013) Characteristics of methanogens and methanotrophs in rice fields: a review. Pac J Mol Biol Biotechnol 21:3–17

    Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Feng J, Li F, Zhou X, Xu C, Ji L, Chen Z, Fang F (2018) Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: a global meta-analysis. PLoS One 13(5):e0196703

    Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere 47:7–21

    Google Scholar 

  • Francis CA, Bemanand JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    Article  CAS  Google Scholar 

  • Freney JR, Trevitt ACF, De Datta SK, Obcemea WN, Real JG (1990) The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines. Biol Fertil Soils 9:31–36

    Article  CAS  Google Scholar 

  • Granli T, Bockman OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci 12:7–128

    Google Scholar 

  • Green SM (2013) Ebullition of methane from rice paddies: the importance of fur the ring understanding. Plant Soil 370:31–34

    Article  CAS  Google Scholar 

  • Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H (2016) Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9

    Article  Google Scholar 

  • Haque MM, Kim SY, Pramanik P, Kim G, Kim PJ (2013) Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil. Biol Fertil Soils 49:487–493

    Article  CAS  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    Article  CAS  Google Scholar 

  • Heffer P (2009) Assessment of fertilizer use by crop at the global level 2006–2007. Paris, France, International Fertilizer Industry Association

    Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233

    Article  CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Van Cleemput O, Patrick WH (2000) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186

    Article  CAS  Google Scholar 

  • Hua X, Guangxi X, Cai ZC, Tsuruta H (1997) Nitrous oxide emissions from three rice paddy fields in China. Nutr Cycl Agroecosyst 49:23–28

    Article  CAS  Google Scholar 

  • Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22(5): 3342–3360

    Google Scholar 

  • IPCC (1997) In: Houghton JT, Filho LGM, Lim B, Treanton K, Mamaty I, Bonduki Y, Griggs DJ, Callender BA (eds) IPCC Guidelines for National Greenhouse Gas Inventories. UK Meteorological Office, Bracknell

    Google Scholar 

  • IPCC (2001) In: Houghton JT et al (eds) Climate change: a scientific basis, inter governmental panel on climate change. Cambridge University Press

    Google Scholar 

  • IPCC (2007a) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate

    Google Scholar 

  • IPCC (2007b) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Qin D, Manning M, Marquis M, Averyt K, Marquis M, Tignor MMB (eds) Climate change 2007: the physical science basis; in: Solomon S. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability working group II contribution to the fifth assessment report. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IRRI (1993) In: Maclean JL, Dawe DC, Hardy B, Hettel GP (eds) Rice Almanac. International Rice Research Institute, Los Banos, p 257

    Google Scholar 

  • Ishii S, Ikeda S, Minamisawa K, Senoo K (2011) Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 26:282–292

    Article  Google Scholar 

  • Jackel U, Schnell S, Conard R (2000) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33:965–971

    Article  Google Scholar 

  • Jain MC, Kumar S, Wassmann R, Mitra S, Singh SD, Singh JP, Singh R, Yadav AK, Gupta S (2000) Methane emissions from irrigated rice fields in northern India (New Delhi). Nutr Cycl Agroecosyst 58:75–83. https://doi.org/10.1023/A:1009882216720

    Article  CAS  Google Scholar 

  • Jain N, Dubey R, Dubey DS, Singh J, Khanna M, Pathak H, Bhatia A (2014) Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy Water Environ 12:355–363

    Article  Google Scholar 

  • James SJ, James C (2010) The food cold-chain and climate change. Food Res Int 43:1944–1956

    Article  Google Scholar 

  • Jia ZJ, Cai ZC, Xu H, Tsuruta H (2002) Effect of rice cultivars on methane fluxes in a paddy soil. Nutr Cycl Agroecosyst 64:87–94. https://doi.org/10.1023/A:1021102915805

    Article  CAS  Google Scholar 

  • Jiang Y, Carrijo D, Huang S, Chen J, Balaine N, Zhang W, Groenigen KJ, Linquist B (2019) Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop Res 234:47–54

    Article  Google Scholar 

  • Kimura M (2000) Anaerobic microbiology in waterlogged rice fields. In: Bollag JM, Stotzky G (eds) Soil biochemistry 10. Marcell Dekker, New York, pp 35–138

    Google Scholar 

  • Kimura M, Murase J, Lu YH (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416

    Article  CAS  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester, p 282

    Book  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Kumar U, Jain MC, Pathak H, Kumar S, Majumdar D (2000) Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. Biol Fertil Soils 32:474–478

    Article  CAS  Google Scholar 

  • Kumar A, Nayak AK, Das BS, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P, Pathak H (2019) Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2. Sci Total Environ 650:2032–2050

    Article  CAS  Google Scholar 

  • Li YL, Zhang YL, Hu J, Shen QR (2007) Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Biol Fertil Soils 43:417–425

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  CAS  Google Scholar 

  • Lindau CW, Bollich PK, DeLaune RD, Mosier AR, Bronson KF (1993) Methane mitigation in flooded Louisiana rice fields. Bio Fert Soils 15(3):174–178

    Google Scholar 

  • Lindau CW, Patrick WH, De Laune RD, Reddy KR (1990) Rate of accumulation and emission of N2, N2O and CH4 from a flooded rice soil. Plant Soil 129:269–276

    Article  CAS  Google Scholar 

  • Linquist BA, Adviento-Borbe MA, Pittelkow CM, van Kessel C, van Groenigen KJ (2012) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop Res 135:10–21

    Article  Google Scholar 

  • Lu Y, Fu L, Lu Y, Hugenholtz F, Ma K (2015) Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition. Soil Biol Biochem 81:17–27

    Article  CAS  Google Scholar 

  • Maclean J, Hardy B, Hettel G (2013) Rice almanac: source book for one of the most important economic activities on earth. IRRI, Manila

    Google Scholar 

  • Majumdar D (2003) Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Curr Sci 84(10):1317–1326

    CAS  Google Scholar 

  • Majumdar D, Kumar S, Jain MC (1999) Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Asia Pacific J Environ Dev 6:81–95

    Google Scholar 

  • Majumdar D, Kumar S, Pathak H, Jain MC, Kumar U (2000) Reducing nitrous oxide emission from an irrigated rice field of North India with nitrification inhibitors. Egric Ecosys Environ 81:163–169

    Article  CAS  Google Scholar 

  • Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J (2005) Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere 58:141–147

    Article  CAS  Google Scholar 

  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896

    Article  CAS  Google Scholar 

  • Mitra S, Jain MC, Kumar S, Bandyopadhya SK, Kalra N (1999) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73:177–183

    Google Scholar 

  • Mohanty SR, Nayak DR, Babu YJ, Adhya TK (2004) Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition. Microbio Res 159(3):193–201

    Google Scholar 

  • Nazaries L, Murrekk JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15:2395–2417

    Article  CAS  Google Scholar 

  • Neue H (1993) Methane emission from rice fields: wetland rice fields may make a major contribution to global warming. Bio Sci 43:466–473

    Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66

    Article  CAS  Google Scholar 

  • Nyamadzawo G, Wuta M, Chirinda N, Mujuru L, Smith JL (2013) Greenhouse gas emissions from intermittently flooded (Dambo) rice under different tillage practices in chiota smallholder farming area of Zimbabwe. Atmos Clim Sci 3:13–20

    Google Scholar 

  • Pabby A, Parsanna R, Singh PK (2003) Biological significance of Azolla and its utilization in agriculture. Proc Indian Natl Sci Acad 3:299–333

    Google Scholar 

  • Palmer RR, Reeve IN (1993) Methanogen genes and the molecular biology of methane biosynthesis. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, Berlin, pp 13–35

    Chapter  Google Scholar 

  • Pandey A, Mai VT, Vu DQ, Bui TPL, Mai TLA, Jensen LS, Neergaaed A (2014) Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ 196:137–146

    Article  CAS  Google Scholar 

  • Parashar DC, Rai J, Sharma RC, Singh N (1991) Parameters affecting methane emission from rice paddy fields. Indian J Radio Space Phys 20:12–17

    CAS  Google Scholar 

  • Pathak H (1999) Emissions of nitrous oxide from soil. Curr Sci 77:359–369

    CAS  Google Scholar 

  • Pathak H, Bhatia A, Prasad S, Singh S, Kumar S, Jain MC, Kumar U (2002) Emission of nitrous oxide from rice-wheat systems of indo-Gangetic plains of India. Environ Monit Asses 77:163–178

    Article  CAS  Google Scholar 

  • Pathak H, Arti B, Shiv P, Shalini S, Kumar S, Jain MC, Singh P, Bhatia A, Prasad S, Singh S (2003) Effect of DCD, FYM and moisture regime on nitrous oxide emission from an alluvial soil in rice-wheat cropping system. J Indian Soc Soil Sci 51:139–145

    CAS  Google Scholar 

  • Pathak H, Kumar S, Jain N, Mitra S (2008) Emission of methane from soil. In: Pathak H, Kumar S (eds) Soil and greenhouse effect, monitoring and mitigation, 1st edn. CBS Publishers & Distributors, New Delhi, pp 18–32

    Google Scholar 

  • Pathak H, Tewari AN, Sankhyan S, Dubey DS, Mina U, Singh VK, Jain N, Bhatia A (2011) Direct-seeded rice: potential, performance and problems – a review. Curr Adv Agric Sci 3:77–88

    Google Scholar 

  • Pathak H, Chakrabarti B, Bhatia A, Jain N, Aggarwal PK (2012) Potential and cost of low carbon technologies in rice and wheat systems: a case study for the Indo-Gangetic Plains. In: Pathak H, Aggarwal PK (eds) Low carbon technologies for agriculture: a study on rice and wheat systems in the Indo-Gangetic Plains. Indian Agricultural Research Institute, New Delhi, India, pp 12–40

    Google Scholar 

  • Pathak H, Samal P, Shahid M (2018) Revitalizing rice-systems for enhancing productivity, profitability and climate resilience. In: Pathak H et al (eds) Rice research for enhancing productivity, profitability and climate resilience. ICAR-National Rice Research Institute, Cuttack, Odisha, pp 1–17

    Google Scholar 

  • Penning H, Conrad R (2007) Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org Geochem 38:2058–2069

    Article  CAS  Google Scholar 

  • Pillai SM, Ravindranathan M, Sivaram S (1986) Dimerization of ethylene and propylene catalyzed by transition-metal complexes. Chem Rev 86(2):353–399

    Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv in Agron 1(24):29–96

    Google Scholar 

  • Pramanik P, Kim PJ (2014) Evaluating changes in cellulolytic bacterial population to explain methane emissions from air-dried and composted manure treated rice paddy soils. Sci Total Environ 470:1307–1312

    Article  Google Scholar 

  • Rath AK, Ramakrishnan B, Sethunathan N (2002) Effect of application of ammonium thiosulphate on production and emission of methane in a tropical rice soil. Agric Ecosyst Environ 90:319–325

    Article  CAS  Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416

    Article  CAS  Google Scholar 

  • Reddy KR, Patrick WHJ (1986) Denitrification losses in flooded rice fields. In: De Datta SK, Patrick WHJ (eds) Nitrogen economy of flooded rice soils. Martinus Nijhoff Publishers, Dordrecht, pp 99–116

    Chapter  Google Scholar 

  • Rosencrantz D, Rainey FA, Janssen PH (1999) Culturable populations of Sporomusa spp. L. and Desulfovibrio spp. L. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65:3526–3533

    Article  CAS  Google Scholar 

  • Salvas PL, Taylor BF (1980) Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6- (trichloromethyl) pyridine (nitrapyrin or N-serve)

    Google Scholar 

  • Sander OB, Samson M, Buresh RJ (2014) Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2:235–236

    Google Scholar 

  • Sarwar N, Atique-ur-Rehman, Ahmad S, Hasanuzzaman, M (2022) Modern Techniques of Rice Crop Production. Springer Nature Singapore Pvt. Ltd., (EBook ISBN (978-981-16-4955-4); Hard Cover ISBN (978-981-16-4954-7); https://doi.org/10.1007/978-981-16-4955-4) (https://www.springer.com/in/book/9789811649547)

  • Sass RL, Fisher FM, Wang YB, Turner FT, Jund MF (1992) Methane emission from rice fields: the effect of floodwater management. Global Biogeochem Cycle 6:249–262

    Article  CAS  Google Scholar 

  • Savant NK, De Datta SK (1982) Nitrogen transformations in wetland rice soils. Adv Agron 35:241–302

    Article  CAS  Google Scholar 

  • Serrano-Silva N, Sarria-Guzman Y, Dendooven L, Luna-Guido M (2014) Methanogenesis and methanotrophy in soil: a review. Pedosphere 24:291–307

    Article  CAS  Google Scholar 

  • Setyanto P, Rosenani AB, Boer R, Fauziah CI, Khanif MJ (2004) The effect of rice cultivars on methane emission from irrigated rice field. Indones J Agric 5(1):20–31

    Article  Google Scholar 

  • Shakoor A, Ashraf F, Shakoor S, Mustafa A, Rehman A, Altaf MM (2020) Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ Sci Pollution Res 27:38513–38536. https://doi.org/10.1007/s11356-020-10151-1

    Article  CAS  Google Scholar 

  • Simpson JR, Muirhead WA, Bowmer KH, Cai GX, Freney JR (1988) Control of gaseous nitrogen losses from urea applied to flooded rice soils. Fertil Res 18:31–47

    Article  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen T, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosys Environ 133:247–266

    Article  CAS  Google Scholar 

  • Strack M, Kellner E, Waddington JM (2005) Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Global Biogeochem Cycles 19:1003

    Article  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170

    Article  CAS  Google Scholar 

  • Tiedje JM (1988) Ecology of nitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York

    Google Scholar 

  • Tiedje JM (1994) Denitrifiers. In: Weaver RW, Angle JS, Bottomley PJ (eds) Methods of soil analysis, part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, pp 245–267

    Google Scholar 

  • Tokida T, Miyazaki T, Mizoguchi M (2005) Ebullition of methane from peat with falling atmospheric pressure. Geophys Res Lett 32:13823

    Article  Google Scholar 

  • Tokida T, Fumoto T, Cheng W, Matsunami T, Adachi M, Katayanagi N, Mastsushima M, Okawara Y, Nakamura H, Okada M, Sameshima R, Hasegawa T (2010) Effects of free air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7:2639–2653

    Article  CAS  Google Scholar 

  • Tokida T, Cheng W, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T (2013) The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air (CO2) enrichment and soil warming experiments. Plant Soil 364:131–143

    Article  CAS  Google Scholar 

  • Ussiri D, Lal R (2012) Soil emission of nitrous oxide and its mitigation. Springer, Dordrecht

    Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosyst 58:349–356. https://doi.org/10.1023/A:1009879610785

    Article  CAS  Google Scholar 

  • Wang ZP, Lindau CW, Delaune RD, Patrick WH (1993) Methane emission and entrapment in flooded rice soils as affected by soil properties. Bio Fert Soils 16(3):163–168

    Google Scholar 

  • Wang C, Derrick YF, Lai SJ, Wang W, Zeng C, Peñuelas J (2017) Factors related with CH4 and N2O emissions from a paddy field: clues for management implications. PLoS One 12(1):e0169254

    Article  Google Scholar 

  • Xu H, Xing G, Cai Z, Tsuruta H, Xu H, Xing GX, Cai ZC (2000) Effect of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedol Sin 37:499–505

    CAS  Google Scholar 

  • Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycl Agroecosyst 49:213–220

    Article  CAS  Google Scholar 

  • Yoon CG (2009) Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy Water Environ 7:357

    Article  Google Scholar 

  • Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. Adv Carbon Capture 3–28. https://doi.org/10.1016/b978-0-12-819657-1.00001-3

  • Zhang W, Yu Y, Huang Y, Li T, Wang P (2011) Modelling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob Chang Biol 17:3511–3523

    Article  Google Scholar 

  • Zhang G, Yu H, Fan X, Liu G, Ma J, Xu H (2015) Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season. Soil Biol Biochem 84:75–82

    Article  CAS  Google Scholar 

  • Zhao X, Pu C, Ma ST, Liu SL, Xue JF, Wang X, Wang YQ, Li SS, Lal R, Chen (2019) Management-induced greenhouse gases emission mitigation in global rice production. Sci Total Environ 649:1299–1306

    Google Scholar 

  • Zumft WG, Kroneck PMH (2006) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by bacteria and archaea. Adv Microb Physiol 52:107–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, Z. et al. (2022). Greenhouse Gas Emissions and Mitigation Strategies in Rice Production Systems. In: Ahmed, M. (eds) Global Agricultural Production: Resilience to Climate Change . Springer, Cham. https://doi.org/10.1007/978-3-031-14973-3_8

Download citation

Publish with us

Policies and ethics