Skip to main content

Strategies for Mitigating Greenhouse Gas Emissions from Agricultural Ecosystems

  • Chapter
  • First Online:
Global Agricultural Production: Resilience to Climate Change

Abstract

Climate change, driven by rising greenhouse gas (GHG) concentrations in the atmosphere, poses serious and wide-ranging threats to human societies and natural ecosystems all over the world. Agriculture and forestry account for roughly one-third of global emissions, including 9 to 14% of GHGs from crop and livestock activities. Due to increasing demand based on human population and income growth and dietary change, GHG emissions are likely to increase by about 76% by 2050 relative to the levels in 1995. Nitrous oxide (N2O) and methane (CH4) are the major GHGs contributed from the agricultural sector, contributing 50 and 70%, respectively, to the total levels. However, carbon dioxide (CO2) emissions are mainly contributed by a change in land use patterns and decomposition of organic materials. Global emission pathways that would limit warming to 1.5 °C or less, in line with the Paris Agreement’s temperature goal, depend on significant reductions in agricultural GHGs (N2O and CH4) as well as net zero CO2 emissions from fossil fuels. As the agricultural sector mainly contributes to N2O and CH4, 4.8 Gt CO2-eq reduction in direct global agricultural non-CO2 emissions below baseline by 2050 is needed. These ambitious targets of mitigation pathways present an enormous challenge, and accomplishment of these goals is only possible by the implementation of effective GHG mitigation strategies to the agricultural sector. Mitigation measures in the agricultural sector include increasing C sequestration as well as reduction in the GHGs from livestock and agricultural processes. In this chapter, we discussed mitigation strategies for GHG emissions from the agricultural sector at the global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Chang Biol 16(6):1837–1846

    Article  Google Scholar 

  • Albanito F, Lebender U, Cornulier T, Sapkota TB, Brentrup F, Stirling C, Hillier J (2017) Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems – a review and modelling of emission factors. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Amon B, Amon T, Boxberger J, Alt C (2001) Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading). Nutr Cycl Agroecosyst 60(1):103–113

    Article  CAS  Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118(1–4):173–182

    Article  CAS  Google Scholar 

  • Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S (2006) Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ 112(2-3):153–162

    Article  CAS  Google Scholar 

  • Andraski TW, Bundy LG, Brye KR (2000) Crop management and corn nitrogen rate effects on nitrate leaching. J Environ Qual 29(4):N1095–N1103

    Article  Google Scholar 

  • Arango MA, Rice CW (2021) Impact of nitrogen management and tillage practices on nitrous oxide emissions from rainfed corn. Soil Sci Soc Am J 85(5):1425–1436

    Article  CAS  Google Scholar 

  • Archimède H, Eugène M, Magdeleine CM, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166:59–64

    Article  Google Scholar 

  • Augustine DJ, Milchunas DG, Derner JD (2013) Spatial redistribution of nitrogen by cattle in semiarid rangeland. Rangel Ecol Manag 66(1):56–62

    Article  Google Scholar 

  • Bastos LM, Rice CW, Tomlinson PJ, Mengel D (2021) Untangling soil-weather drivers of daily N2O emissions and fertilizer management mitigation strategies in no-till corn. Soil Sci Soc Am J 85(5):1437–1447

    Article  CAS  Google Scholar 

  • Bayer C, Mielniczuk J, Amado TJ, Martin-Neto L, Fernandes SV (2000) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Tillage Res 54(1–2):101–109

    Article  Google Scholar 

  • Beauchemin KA, Kreuzer M, O’mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48(2):21–27

    Article  CAS  Google Scholar 

  • Beever DE, Dhanoa MS, Losada HR, Evans RT, Cammell SB, France J (1986) The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br J Nutr 56(2):439–454

    Article  CAS  Google Scholar 

  • Benchaar C, Pomar C, Chiquette J (2001) Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can J Anim Sci 81(4):563–574

    Article  Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Chang Biol 22(2):763–781

    Article  Google Scholar 

  • Berg W, Brunsch R, Pazsiczki I (2006) Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agric Ecosyst Environ 112(2-3):129–134

    Article  CAS  Google Scholar 

  • Bezdicek D, Fauci M, Albrecht S, Skirvin K (2002, January 16–18) Soil carbon and C sequestration under different cropping and tillage practices in the Pacific northwest. Proceedings of the Pacific Northwest Direct Seed Cropping Systems Conference, Spokane, WA

    Google Scholar 

  • Bouwman AF (1990) Soils and the greenhouse effect

    Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils – what matters for their functioning? Adv Appl Microbiol 75:33–70

    Article  CAS  Google Scholar 

  • Breitenbeck GA, Bremner JM (1986) Effects of rate and depth of fertilizer application on emission of nitrous oxide from soil fertilized with anhydrous ammonia. Biol Fertil Soils 2(4):201–204

    Google Scholar 

  • Bronson KF, Mosier AR (1991) Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane, and carbon dioxide emissions from flooded rice. Biol Fertil Soils 11(2):116–120

    Article  CAS  Google Scholar 

  • Buragohain S, Sarma B, Nath DJ, Gogoi N, Meena RS, Lal R (2017) Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res 56(1):49–58

    Article  Google Scholar 

  • Burton DL, Zebarth BJ, Gillam KM, MacLeod JA (2008) Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can J Soil Sci 88(2):229–239

    Article  CAS  Google Scholar 

  • Cabaraux JF, Philippe FX, Laitat M, Canart B, Vandenheede M, Nicks B (2009) Gaseous emissions from weaned pigs raised on different floor systems. Agric Ecosyst Environ 130(3–4):86–92

    Article  CAS  Google Scholar 

  • Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112(2–3):171–177

    Article  CAS  Google Scholar 

  • Chadwick DR (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos Environ 39(4):787–799

    Article  CAS  Google Scholar 

  • Ciampitti IA, Vyn TJ (2012) Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review. Field Crop Res 133:48–67

    Article  Google Scholar 

  • Ciampitti IA, Vyn TJ (2014) Understanding global and historical nutrient use efficiencies for closing maize yield gaps. Agron J 106(6):2107–2117

    Article  Google Scholar 

  • Cowan NJ, Norman P, Famulari D, Levy PE, Reay DS, Skiba UM (2015) Spatial variability and hotspots of soil N2O fluxes from intensively grazed grassland. Biogeosciences 12(5):1585–1596

    Article  Google Scholar 

  • Decock C (2014) Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern US: potential and data gaps. Environ Sci Technol 48(8):4247–4256

    Article  CAS  Google Scholar 

  • Desjardins RL, Smith W, Grant B, Campbell C, Riznek R (2005) Management strategies to sequester carbon in agricultural soils and to mitigate greenhouse gas emissions. In: Increasing climate variability and change. Springer, Dordrecht, pp 283–297

    Chapter  Google Scholar 

  • Dick WA, Blevins RL, Frye WW, Peters SE, Christenson DR, Pierce FJ, Vitosh ML (1998) Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil Tillage Res 47(3–4):235–244

    Article  Google Scholar 

  • Dinuccio E, Berg W, Balsari P (2008) Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos Environ 42(10):2448–2459

    Article  CAS  Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources of sinks of greenhouse gases? Agrofor Syst 31(2):99–116

    Article  Google Scholar 

  • Doerge TA, Roth RL, Gardner BR (1991) Nitrogen fertilizer management in Arizona. College of Agriculture, University of Arizona, Tucson

    Google Scholar 

  • Du Preez CC, Van Huyssteen CW, Mnkeni PN (2011) Land use and soil organic matter in South Africa 2: a review on the influence of arable crop production. S Afr J Sci 107(5):1–8

    Google Scholar 

  • Dumanski J (2004) Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Clim Chang 65(3):255–261

    Article  CAS  Google Scholar 

  • Dyer JA, Desjardins RL (2003) The impact of farm machinery management on the greenhouse gas emissions from Canadian agriculture. J Sustain Agric 22(3):59–74

    Article  Google Scholar 

  • Eckard RJ, Grainger C, De Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci 130(1-3):47–56

    Article  Google Scholar 

  • Edouard N, Charpiot A, Hassouna M, Faverdin P, Robin P, Dollé JB (2012, June) Ammonia and greenhouse gases emissions from dairy cattle buildings. In: International symposium on emission of gas and dust from livestock. (p. np)

    Google Scholar 

  • Fangueiro D, Senbayran M, Trindade H, Chadwick D (2008) Cattle slurry treatment by screw press separation and chemically enhanced settling: effect on greenhouse gas emissions after land spreading and grass yield. Bioresour Technol 99(15):7132–7142

    Article  CAS  Google Scholar 

  • FAO (2010) Food and agriculture organization of the United Nations statistical databases. See http://faostat.fao.org/

  • Fernández FG, Venterea RT, Fabrizzi KP (2016) Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils. J Environ Qual 45(6):1847–1855

    Article  Google Scholar 

  • Fisher MJ, Rao IM, Ayarza MA, Lascano CE, Sanz JI, Thomas RJ, Vera RR (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371(6494):236–238

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2019) Recarbonization of global soils – a dynamic response to offset global emissions. FAO, Rome. http://www.fao.org/3/i7235en/I7235EN.pdf

    Google Scholar 

  • Frank S, Havlík P, Stehfest E, van Meijl H, Witzke P, Pérez-Domínguez I, van Dijk M, Doelman JC, Fellmann T, Koopman JF, Tabeau A (2019) Agricultural non-CO2 emission reduction potential in the context of the 1.5 C target. Nat Clim Chang 9(1):66–72

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern United States. Soil Sci Soc Am J 74(2):347–357

    Article  CAS  Google Scholar 

  • Gasser T, Crepin L, Quilcaille Y, Houghton RA, Ciais P, Obersteiner M (2020) Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 17(15):4075–4101

    Article  CAS  Google Scholar 

  • Groenestein K, Mosquera J, Van der Sluis S (2012) Emission factors for methane and nitrous oxide from manure management and mitigation options. J Integr Environ Sci 9(Supp 1):139–146

    Article  Google Scholar 

  • Guarino M, Fabbri C, Brambilla M, Valli L, Navarotto P (2006) Evaluation of simplified covering systems to reduce gaseous emissions from livestock manure storage. Trans ASABE 49(3):737–747

    Article  CAS  Google Scholar 

  • Haeussermann A, Hartung E, Gallmann E, Jungbluth T (2006) Influence of season, ventilation strategy, and slurry removal on methane emissions from pig houses. Agric Ecosyst Environ 112(2–3):115–121

    Article  CAS  Google Scholar 

  • Halvorson AD, Wienhold BJ, Black AL (2002) Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci Soc Am J 66(3):906–912

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103(39):14288–14293

    Article  CAS  Google Scholar 

  • Hansis E, Davis SJ, Pongratz J (2015) Relevance of methodological choices for accounting of land use change carbon fluxes. Glob Biogeochem Cycles 29(8):1230–1246

    Article  CAS  Google Scholar 

  • Hao X, Chang C, Larney FJ, Travis GR (2001) Greenhouse gas emissions during cattle feedlot manure composting. J Environ Qual 30(2):376–386

    Article  CAS  Google Scholar 

  • Hati KM, Biswas AK, Somasundaram J, Mohanty M, Singh RK, Sinha NK, Chaudhary RS (2020) Soil organic carbon dynamics and carbon sequestration under conservation tillage in tropical vertisols. In: Ghosh P, Mahanta S, Mandal D, Mandal B, Ramakrishnan S (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_12

    Chapter  Google Scholar 

  • Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54(2):448–452

    Article  Google Scholar 

  • Hindrichsen IK, Wettstein HR, Machmüller A, Jörg B, Kreuzer M (2005) Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environ Monit Assess 107(1):329–350

    Article  CAS  Google Scholar 

  • Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP (2011) Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob Chang Biol 17(2):1140–1152

    Article  Google Scholar 

  • Hockstad L, Hanel L (2018) Inventory of US greenhouse gas emissions and sinks, No. cdiac: EPA-EMISSIONS. Environmental System Science Data Infrastructure for a Virtual Ecosystem

    Google Scholar 

  • Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31(3):456–472

    Article  CAS  Google Scholar 

  • Huppmann D, Rogelj J, Kriegler E, Krey V, Riahi K (2018) A new scenario resource for integrated 1.5 C research. Nat Clim Chang 8(12):1027–1030

    Article  Google Scholar 

  • Hutchinson JJ, Campbell CA, Desjardins RL (2007) Some perspectives on carbon sequestration in agriculture. Agric For Meteorol 142(2-4):288–302

    Article  Google Scholar 

  • IPCC (1997) In: Watson RT, Zinyowera MC, Moss RH (eds) The regional impacts of climate change: an assessment of vulnerability

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge, United Kingdom and New York

    Google Scholar 

  • IPCC (2014) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • IPCC (2018) Global warming of 1.5 C. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S (eds) An IPCC special report on the impacts of global warming, vol 1. Intergovernmental Panel on Climate Change, Cambridge University Press, pp 1–9

    Google Scholar 

  • IPCC Climate Change (2007) Synthesis Report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change Core Writing Team. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Janzen HH, Desjardins RL, Asselin JMR, Grace B (1998) The health of our air: toward sustainable agriculture in Canada. Ministry of Public Works and Government Services

    Google Scholar 

  • Ju X, Lu X, Gao Z, Chen X, Su F, Kogge M, Römheld V, Christie P, Zhang F (2011) Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environ Pollut 159(4):1007–1016

    Article  CAS  Google Scholar 

  • Kaiser, S., 1999. Analyse und Bewertung eines Zweiraumkompoststalls für Mastschweine unter besonderer Berücksichtigung der gasförmigen Stoffströme. Arbeitskreis Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI

    Google Scholar 

  • Karakurt I, Aydin G, Aydiner K (2012) Sources and mitigation of methane emissions by sectors: a critical review. Renew Energy 39(1):40–48

    Article  CAS  Google Scholar 

  • Laborde D, Mamun A, Martin W, Piñeiro V, Vos R (2021) Agricultural subsidies and global greenhouse gas emissions. Nat Commun 12(1):1–9

    Article  Google Scholar 

  • Lal R (1978) Influence of within-and between-row mulching on soil temperature, soil moisture, root development and yield of maize (Zea mays L.) in a tropical soil. Field Crop Res 1:127–139

    Article  Google Scholar 

  • Lal R (1979) Influence of Six Years of no-tillage and conventional plowing on fertilizer response of maize (Zea mays L.) on an Alfisol in the Tropics. Soil Sci Soc Am J 43(2):399–403

    Article  CAS  Google Scholar 

  • Lal R (1997) Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res 43(1–2):81–107

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830

    Article  CAS  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60(9):708–721

    Article  Google Scholar 

  • Lal R (2013) Food security in a changing climate. Ecohydrol Hydrobiol 13(1):8–21

    Article  Google Scholar 

  • Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutr Cycl Agroecosyst 49(1):243–253

    Article  CAS  Google Scholar 

  • Leahy S, Clark H, Reisinger A (2020) Challenges and prospects for agricultural greenhouse gas mitigation pathways consistent with the Paris agreement. Front Sustain Food Syst 4:69

    Article  Google Scholar 

  • López-Fando C, Pardo MT (2001) The impact of tillage systems and crop rotations on carbon sequestration in a calcic Luvisol of Central Spain. In: Conservation agriculture, a worldwide challenge. First World Congress on conservation agriculture, Madrid, Spain, 1-5 October, 2001. Volume 2: offered contributions. XUL, pp 135–139

    Google Scholar 

  • López-Mosquera ME, Fernández-Lema E, Villares R, Corral R, Alonso B, Blanco C (2011) Composting fish waste and seaweed to produce a fertilizer for use in organic agriculture. Procedia Environ Sci 9:113–117

    Article  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34(2):443–454

    Article  CAS  Google Scholar 

  • Ma BL, Wu TY, Tremblay N, Deen W, Morrison MJ, McLaughlin NB, Gregorich EG, Stewart G (2010) Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Glob Chang Biol 16(1):156–170

    Article  Google Scholar 

  • Mandal B, Majumder B, Bandyopadhyay PK, Hazra GC, Gangopadhyay A, Samantaray RN, Mishra AK, Chaudhury J, Saha MN, Kundu S (2007) The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Glob Chang Biol 13(2):357–369

    Article  Google Scholar 

  • Martinez J, Guiziou F, Peu P, Gueutier V (2003) Influence of treatment techniques for pig slurry on methane emissions during subsequent storage. Biosyst Eng 85(3):347–354

    Article  Google Scholar 

  • McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Chang Biol 11(10):1712–1719

    Article  Google Scholar 

  • Meena RS, Kumar S, Yadav GS (2020) Soil carbon sequestration in crop production. In: Meena R (ed) Nutrient dynamics for sustainable crop production. Springer, Singapore. https://doi.org/10.1007/978-981-13-8660-2_1

    Chapter  Google Scholar 

  • Mennicken L (1998) Biobett für Legehennen – ein Beitrag zum Umweltschutz? [biobeds for laying hens – a contribution to environmental protection?]. DGS 13:12–20

    Google Scholar 

  • Millar N, Urrea A, Kahmark K, Shcherbak I, Robertson GP, Ortiz-Monasterio I (2018) Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agric Ecosyst Environ 261:125–132

    Article  CAS  Google Scholar 

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) SPECIAL TOPICS – mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91(11):5070–5094

    Article  CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. In: Progress in nitrogen cycling studies. Springer, Dordrecht, pp 589–602

    Chapter  Google Scholar 

  • Nair PR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Neue HU (1993) Methane emission from rice fields. Bioscience 43(7):466–474

    Article  Google Scholar 

  • Nicks B, Laitat M, Vandenheede M, Désiron A, Verhaeghe C, Canart B (2003) Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdustbased deep litters. Anim Res 52(3):299–308

    Article  CAS  Google Scholar 

  • Nicks B, Laitat M, Farnir F, Vandenheede M, Desiron A, Verhaeghe C, Canart B (2004) Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs. Anim Sci 78(1):99–107

    Article  CAS  Google Scholar 

  • Nicoloso RS, Rice CW (2021) Intensification of no-till agricultural systems: An opportunity for carbon sequestration. Soil Sci Soc Am J 85(5):1395–1409

    Article  CAS  Google Scholar 

  • Oenema O, Ju X, de Klein C, Alfaro M, del Prado A, Lesschen JP, Zheng X, Velthof G, Ma L, Gao B, Kroeze C (2014) Reducing nitrous oxide emissions from the global food system. Curr Opin Environ Sustain 9:55–64

    Article  Google Scholar 

  • Ogle SM, Jay Breidt F, Eve MD, Paustian K (2003) Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Glob Chang Biol 9(11):1521–1542

    Article  Google Scholar 

  • Ohiri AC, Ezumah HC (1990) Tillage effects on cassava (Manihot esculenta) production and some soil properties. Soil Tillage Res 17(3-4):221–229

    Article  Google Scholar 

  • Olivier JG, Peters JA (2020) Trends in global CO2 and total greenhouse gas emissions: 2020 report. PBL Netherlands Environmental Assessment Agency, The Hague

    Google Scholar 

  • Omara P, Aula L, Oyebiyi F, Raun WR (2019) World cereal nitrogen use efficiency trends: review and current knowledge. Agrosyst Geosci Environ 2(1):1–8

    Article  Google Scholar 

  • Parkin TB, Hatfield JL (2013) Enhanced efficiency fertilizers: effect on nitrous oxide emissions in Iowa. United States Department of Agriculture – Agricultural Research Service and University of Nebraska, Lincoln

    Google Scholar 

  • Pattey E, Trzcinski MK, Desjardins RL (2005) Quantifying the reduction of greenhouse gas emissions as a resultof composting dairy and beef cattle manure. Nutr Cycl Agroecosyst 72(2):173–187

    Article  CAS  Google Scholar 

  • Paustian KAOJH, Andren O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Van Noordwijk M, Woomer PL (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–244

    Article  Google Scholar 

  • Petersen SO, Hoffmann CC, Schäfer CM, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SB, Greve MH (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9(1):403–422

    Article  CAS  Google Scholar 

  • Petersen SO (2018) Greenhouse gas emissions from liquid dairy manure: prediction and mitigation. J Dairy Sci 101(7):6642–6654

    Article  CAS  Google Scholar 

  • Petersen SO, Dorno N, Lindholst S, Feilberg A, Eriksen J (2013) Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage. Nutr Cycl Agroecosyst 95(1):103–113

    Article  CAS  Google Scholar 

  • Philippe FX, Laitat M, Canart B, Vandenheede M, Nicks B (2007) Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter. Livest Sci 111(1–2):144–152

    Article  Google Scholar 

  • Phillips RL, Tanaka DL, Archer DW, Hanson JD (2009) Fertilizer application timing influences greenhouse gas fluxes over a growing season. J Environ Qual 38(4):1569–1579

    Article  CAS  Google Scholar 

  • Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob Environ Chang 20(3):451–462

    Article  Google Scholar 

  • Qiao C, Liu L, Hu S, Compton JE, Greaver TL, Li Q (2015) How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob Chang Biol 21(3):1249–1257

    Article  Google Scholar 

  • Rasmussen PE, Rohde CR (1988) Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semiarid soil. Soil Sci Soc Am J 52(4):1114–1117

    Article  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91(3):357–363

    Article  Google Scholar 

  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2(6):410–416

    Article  CAS  Google Scholar 

  • Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res 41(1–2):105–118

    Article  Google Scholar 

  • Ro S, Seanjan P, Tulaphitak T, Inubushi K (2011) Sulfate content influencing methane production and emission from incubated soil and rice-planted soil in Northeast Thailand. Soil Sci Plant Nutr 57(6):833–842

    Article  CAS  Google Scholar 

  • Salinas-Garcia JR, Hons FM, Matocha JE, Zuberer DA (1997) Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization. Biol Fertil Soils 25(2):182–188

    Article  Google Scholar 

  • Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci 114(36):9575–9580

    Article  CAS  Google Scholar 

  • Sarto MV, Borges WL, Sarto JR, Rice CW, Rosolem CA (2020) Deep soil carbon stock, origin, and root interaction in a tropical integrated crop–livestock system. Agrofor Syst 94:1865–1877

    Article  Google Scholar 

  • Searchinger T, Waite R, Hanson C, Ranganathan J, Dumas P, Matthews E (2018) World resources report: creating a sustainable food future. World Resources Institute, p 96

    Google Scholar 

  • Sehy U, Ruser R, Munch JC (2003) Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric Ecosyst Environ 99(1-3):97–111

    Article  CAS  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111(25):9199–9204

    Article  CAS  Google Scholar 

  • Singh H, Northup BK, Baath GS, Gowda PH, Kakani VG (2019) Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains. Mitig Adapt Strateg Glob Chang:1–35

    Google Scholar 

  • Sirohi S, Michaelowa A, Sirohi SK (2007) Mitigation options for enteric methane emissions from dairy animals: an evaluation for potential CDM projects in India. Mitig Adapt Strateg Glob Chang 12(2):259–274

    Article  Google Scholar 

  • Sistani KR, Jn-Baptiste M, Lovanh N, Cook KL (2011) Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers. J Environ Qual 40(6):1795–1805

    Article  Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20(3):229–236

    Article  CAS  Google Scholar 

  • Smith KA (ed) (2010) Nitrous oxide and climate change. Earthscan

    Google Scholar 

  • Smith P, Milne R, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use Manag 16(4):293–295

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363(1492):789–813

    Article  CAS  Google Scholar 

  • Smith P, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH (2014) Agriculture, forestry and other land use (AFOLU). In: IPCC Working Group III Contribution to AR5 (ed) Climate change 2014: mitigation of climate change. Intergovernmental Panel on Climate Change, Cambridge University Press

    Google Scholar 

  • Snyder CS (2017) Enhanced nitrogen fertiliser technologies support the ‘4R’concept to optimise crop production and minimise environmental losses. Soil Res 55(6):463–472

    Article  CAS  Google Scholar 

  • Snyder CS, Fixen PE (2012) Plant nutrient management and risks of nitrous oxide emission. J Soil Water Conserv 67(5):137A–144A

    Article  Google Scholar 

  • Sommer SG, Petersen SO, Møller HB (2004) Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr Cycl Agroecosyst 69(2):143–154

    Article  CAS  Google Scholar 

  • Souza R, Yin J, Calabrese S (2021) Optimal drainage timing for mitigating methane emissions from rice paddy fields. Geoderma 394:114986

    Article  CAS  Google Scholar 

  • Spargo JT, Alley MM, Follett RF, Wallace JV (2008) Soil carbon sequestration with continuous no-till management of grain cropping systems in the Virginia coastal plain. Soil Tillage Res 100(1–2):133–140

    Article  Google Scholar 

  • Steed J Jr, Hashimoto AG (1994) Methane emissions from typical manure management systems. Bioresour Technol 50(2):123–130

    Article  CAS  Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74(3):207–228

    Article  CAS  Google Scholar 

  • Thorman RE, Chadwick DR, Boyles LO, Matthews R, Sagoo E, Harrison R (2006, July) Nitrous oxide emissions during storage of broiler litter and following application to arable land. In: International congress series, vol 1293. Elsevier, pp 355–358

    Google Scholar 

  • US-EPA (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. United States Environmental Protection Agency, Washington, DC. Online Available at: http://www.epa.gov/nonco2/econ-inv/downloads/GlobalAnthroEmissionsReport.pdf (EPA 430-R-06-003, June 2006)

    Google Scholar 

  • VanderZaag AC, Gordon RJ, Jamieson RC, Burton DL, Stratton GW (2009) Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Trans ASABE 52(2):599–608

    Article  CAS  Google Scholar 

  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61(6):903–913

    Article  Google Scholar 

  • Verge XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142(2–4):255–269

    Article  Google Scholar 

  • Wang T, Teague WR, Park SC, Bevers S (2015) GHG mitigation potential of different grazing strategies in the United States Southern Great Plains. Sustainability 7(10):13500–13521

    Article  CAS  Google Scholar 

  • Wang C, Amon B, Schulz K, Mehdi B (2021) Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review. Agronomy 11(4):770

    Article  Google Scholar 

  • Wassmann R, Hosen Y, Sumfleth K (2009) Reducing methane emissions from irrigated rice (no. 16 (3)). International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1996) Climate change 1995. Impacts, adaptations and mitigation of climate change: scientific-technical analyses. IPCC Cambridge University Press

    Google Scholar 

  • Wollenberg E, Richards M, Smith P, Havlík P, Obersteiner M, Tubiello FN, Herold M, Gerber P, Carter S, Reisinger A, Van Vuuren DP (2016) Reducing emissions from agriculture to meet the 2 C target. Glob Chang Biol 22(12):3859–3864

    Article  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • World Bank (2015) Agricultural land (% of land area). Available at: http://data.worldbank.org/indicator/AG.LND.AGRI.ZS/countries?display=graph. Verified 16 Sept 2015

  • Yamulki S (2006) Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures. Agric Ecosyst Environ 112(2–3):140–145

    Article  CAS  Google Scholar 

  • Zaman M, Nguyen ML (2012) How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system. Agric Ecosyst Environ 156:37–48

    Article  CAS  Google Scholar 

  • Zebarth BJ, Snowdon E, Burton DL, Goyer C, Dowbenko R (2012) Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Can J Soil Sci 92(5):759–769

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528(7580):51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following entities for supporting research related to mitigating GHG emissions from the agricultural sector: the Department of Agronomy, Kansas State University; Feed the Future Sustainable Intensification Innovation Lab funded by the United States Agency for International Development (grant number AID-OAA-L-14-00006); and funds allocated to the USDA-ARS project 3070-21610-003-00D by the National Institute of Food and Agriculture, United States Department of Agriculture (award number 2019-68012-29888). Contribution number 22-240-B from Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. V. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H., Prasad, P.V.V., Northup, B.K., Ciampitti, I.A., Rice, C.W. (2022). Strategies for Mitigating Greenhouse Gas Emissions from Agricultural Ecosystems. In: Ahmed, M. (eds) Global Agricultural Production: Resilience to Climate Change . Springer, Cham. https://doi.org/10.1007/978-3-031-14973-3_16

Download citation

Publish with us

Policies and ethics