Skip to main content

Genetic Polymorphisms in the Renin-Angiotensin-Aldosterone System

  • Chapter
  • First Online:
The Renin Angiotensin System in Cardiovascular Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 24))

  • 444 Accesses

Abstract

This chapter presents the evaluation of the impact of nonsynonymous single nucleotide polymorphisms (nsSNPs) in the renin-angiotensin-aldosterone system (RAAS) on patients’ phenotypes not only in regard to arterial hypertension and its complications, but also in regard to other conditions from the fields of interest outside cardiovascular medicine. The impact of nsSNPs in panels for the genes of renin, angiotensinogen, angiotensin-converting enzyme, angiotensin receptor and aldosterone synthase is presented here together with a clinical picture of the investigated cohorts and the impact of nsSNPs on peptide-protein interactions. The first figure in the chapter presents—in a simplified mode—the location of the described genes in the human karyogram, and the second one—the geographical distribution of the probands who participated in the studies described here. A synopsis of the clinical context of the investigated nsSNPs is presented in the table. Genetic variability in nsSNPs of the RAAS is involved in the pathogenesis of arterial hypertension and its complications, and surprisingly also in the pathogenesis of conditions not associated with elevated blood pressure, like neoplasms or inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ji LD, Li JY, Yao BB et al (2017) Are genetic polymorphisms in the renin-angiotensin-aldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J Hum Hypertens 11:695–698

    Article  Google Scholar 

  2. Cunningham JM, Koytiger G, Sorger PK, AlQuraishi M (2020) Biophysical prediction of protein-peptide interactions and signaling networks using machine learning. Nat Methods 17:175–183

    Article  CAS  Google Scholar 

  3. https://www.genome.gov/genetics-glossary/Polymorphism. 05 Dec 2021

  4. Sachidanandam R, Weissman D, Schmidt SC et al (2001) International SNP map working group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Google Scholar 

  5. http://db.systemsbiology.net/kaviar. 05 Dec 2021

  6. Miyazaki H, Fukamizu A, Hirose S et al (1984) Structure of the human renin gene. Proc Natl Acad Sci U S A 81:5999–6003

    Article  CAS  Google Scholar 

  7. Hobart PM, Fogliano M, O’Connor BA et al (1984) Human renin gene: structure and sequence analysis. Proc Natl Acad Sci U S A 81:5026–5030

    Article  CAS  Google Scholar 

  8. Yu SJ, Peng WJ, Zhang H et al (2019) The association between maternal and foetal REN gene polymorphism and preeclampsia/eclampsia: a hybrid design study. Pregn Hypertens 18:150–155

    Article  Google Scholar 

  9. Procopciuc LM, Nemeti G, Buzdugan E et al (2019) Renin-angiotensin system gene variants and risk of early- and late-onset preeclampsia: a single center case-control study. Pregn Hypertens 18

    Google Scholar 

  10. Mocan O, Rădulescu D, Buzdugan E et al (2021) Association between polymorphisms of genes involved in the renin-angiotensin-aldosterone system and the adaptive morphological and functional responses to essential hypertension. Biomed Rep 15:80

    Article  CAS  Google Scholar 

  11. Azova M, Timizheva K, Ait Aissa A et al (2021) Gene polymorphisms of the renin-angiotensin-aldosterone system as risk factors for the development of in-stent restenosis in patients with stable coronary artery disease. Biomolecules 11:763

    Article  CAS  Google Scholar 

  12. Takahashi S, Inoue H, Miyake Y (1992) The human gene for renin-binding protein. J Biol Chem 267:13007–13013

    Article  CAS  Google Scholar 

  13. Knöll A, Schunkert H, Reichwald K et al (1997) Human renin binding protein: complete genomic sequence and association of an intronic T/C polymorphism with the prorenin level in males. Hum Mol Genet 6:1527–1534

    Article  Google Scholar 

  14. Kelly TN, Li C, Hixson JE et al (2017) Resequencing study identifies rare renin-angiotensin-aldosterone system variants associated with blood pressure salt-sensitivity: the GenSalt study. Am J Hypertens 30:495–501

    Article  CAS  Google Scholar 

  15. Gaillard I, Clauser E, Corvol P (1989) Structure of human angiotensinogen gene. DNA 8:87–99

    Article  CAS  Google Scholar 

  16. Fukamizu A, Takahashi S, Seo MS et al (1990) Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter. J Biol Chem 265:7576–7582

    Google Scholar 

  17. Isa MN, Boyd E, Morrison N et al (1990) Assignment of the human angiotensinogen gene to chromosome 1q42-q43 by nonisotopic in situ hybridization. Genomics 8:598–600

    Article  CAS  Google Scholar 

  18. Nibu Y, Takahashi S, Tanimoto K et al (1994) Identification of cell type-dependent enhancer core element located in the 3ʹ-downstream region of the human angiotensinogen gene. J Biol Chem 269:28598–28605

    Article  CAS  Google Scholar 

  19. Goswami AM (2020) Computational analyses prioritize and reveal the deleterious nsSNP in human angiotensinogen gene. Comput Biol Chem 84:107199

    Article  CAS  Google Scholar 

  20. Purkait P, Halder K, Thakur S et al (2017) Association of angiotensinogen SNPs and haplotypes with risk of hypertension in eastern Indian population. Clin Hypertens 23:12

    Article  Google Scholar 

  21. Khatami M, Heidari MM, Haddadzadeh M et al (2017) Simultaneous genotyping of the rs4762 and rs699 polymorphisms in angiotensinogen gene and correlation with Iranian CAD patients with novel hexa-primer ARMS-PCR. Iran J Public Health 46:811–819

    Google Scholar 

  22. Moussa A, Triki S, Hamdouni H et al (2017) Genetic variation in the renin-angiotensin system and diabetic nephropathy in the Tunisian population. Clin Lab 63:469–477

    Article  CAS  Google Scholar 

  23. El-Garawani IM, Shaheen EM, El-Seedi HR et al (2021) Angiotensinogen gene missense polymorphism (rs699 and rs4762): the association of end-stage renal failure risk with type 2 diabetes and hypertension in Egyptians. Genes 12:339

    Article  CAS  Google Scholar 

  24. Scurrah KJ, Lamantia A, Ellis JA, Harrap SB (2017) Familial analysis of epistatic and sex-dependent association of genes of the renin-angiotensin-aldosterone system and blood pressure. Circ Cardiovasc Genet 10:e001595

    Article  CAS  Google Scholar 

  25. Wu Y, Wang M, Zhang J et al (2019) A new model of the mechanism underlying lead poisoning: SNP in miRNA target region influence the AGT expression level. Hereditas 156:6

    Article  Google Scholar 

  26. Cafiero C, Rosapepe F, Palmirotta R et al (2021) Angiotensin system polymorphisms’ in SARS-CoV-2 positive patients: assessment between symptomatic and asymptomatic patients: a pilot study. Pharmgenomics Pers Med 14:621–629

    Google Scholar 

  27. Hubert C, Houot AM, Corvol P, Soubrier F (1991) Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem 266:15377–15383

    Google Scholar 

  28. Lahtela E, Wennerström A, Pietinalho A et al (2017) ACE gene variant and sarcoidosis in a Finnish population. Sarcoidosis Vasc Diffuse Lung Dis 32:104–114

    Google Scholar 

  29. Lahtela E, Wolin A, Pietinalho A et al (2017) Disease marker combination enhances patient characterization in the Finnish sarcoidosis patients. Resp Med 132:92–94

    Article  CAS  Google Scholar 

  30. Zhao J, Zhang W, Shen L et al (2017) Association of ACE, GSTM1, IL-6, NOS3 and CYP1A1 polymorphisms with susceptibility of Mycoplasma pneumoniae pneumonia in Chinese children. Medicine (Baltimore) 96:e6642

    Google Scholar 

  31. Moe SM, Long J, Schwantes-An TL et al (2019) Angiotensin-related genetic determinants of cardiovascular disease in patients undergoing hemodialysis. Nephrol Dial Transplant 34:1924–1931

    CAS  Google Scholar 

  32. Gaowa, Del Coso J, Gu Z et al (2020) Interindividual variation in cardiorespiratory fitness: a candidate gene study in Han Chinese people. Genes (Basel) 11:555

    Google Scholar 

  33. https://www.genecards.org/cgi-bin/carddisp.pl?gene=ACE2. 07 Dec 2021

  34. Feng W, Sun L, Qu XF (2017) Association of AGTR1 and ACE2 gene polymorphism with structural atrial fibrillation in a Chinese Han population. Pharmazie 72:17–21

    CAS  Google Scholar 

  35. Kumar A, Rani B, Sharma R et al (2018) ACE2, CALM3 and TNNI3K polymorphisms as potential disease modifiers in hypertrophic and dilated cardiomyopathies. Mol Cell Biochem 438:167–174

    Article  CAS  Google Scholar 

  36. Zhang Q, Cong M, Wang N et al (2018) Association of angiotensin-converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: a case-control study. Medicine (Baltimore) 97:e12917

    Google Scholar 

  37. Fan Z, Wu G, Yue M et al (2019) Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism. Life Sci 225:39–45

    Article  CAS  Google Scholar 

  38. Khalid Z, Naveed H (2020) Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: implications for virus entry mechanisms. J Biomol Struct Dyn 1–11

    Google Scholar 

  39. Szpirer C, Rivière M, Szpirer J et al (1993) Chromosomal assignment of human and rat hypertension candidate genes: type 1 angiotensin II receptor genes and the SA gene. J Hypertens 11:919–925

    Article  CAS  Google Scholar 

  40. Gemmill RM, Drabkin HA (1991) Report of the second international workshop on human chromosome 3 mapping. Cytogenet Cell Genet 57:162–166

    Article  CAS  Google Scholar 

  41. Furuta H, Guo DF, Inagami T (1992) Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem Biophys Res Commun 183:8–13

    Article  CAS  Google Scholar 

  42. Christodoulou A, Bagli E, Gazouli M et al (2019) Genetic polymorphisms associated with the prevalence of retinal vein occlusion in a Greek population. Int Ophthalmol 39:2637–2648

    Article  Google Scholar 

  43. Sethupathy P, Borel C, Gagnebin M et al (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3ʹ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413

    Article  CAS  Google Scholar 

  44. Singh A, Srivastava N, Amit S et al (2018) Association of AGTR1 (A1166C) and ACE (I/D) polymorphisms with breast cancer risk in North Indian population. Transl Oncol 11:233–242

    Article  Google Scholar 

  45. Mornet E, Dupont J, Vitek A, White PC (1989) Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 264:20961–20967

    Article  CAS  Google Scholar 

  46. Qian J, Zhong J, Yan M et al (2018) Modulation of aldosterone level by aldosterone synthase promoter polymorphism and association with eGFR decline in patent with chronic kidney disease. Discov Med 26:251–260

    Google Scholar 

  47. Zhang H, Li X, Zhou L et al (2017) A novel haplotype of low-frequency variants in the aldosterone synthase gene among northern Han Chinese with essential hypertension. Medicine (Baltimore) 96:e8150

    Google Scholar 

  48. Kehra AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common disease identify individuals with risk equivalent to monogenic mutations. Nat Genetics 50:1219–1224

    Article  Google Scholar 

  49. Say Y-H (2017) The association of insertions/deletions (INDELs) and variable number tandem repeats (VNTRs) with obesity and its related traits and complications. J Physiol Anthropol 36:25

    Article  Google Scholar 

  50. Hasimu B, Nakayama T, Mizutani Y et al (2003) A novel variable number of tandem repeat polymorphism of the renin gene and essential hypertension. Hypertens Res 26:473–477

    Article  CAS  Google Scholar 

  51. Singh KD, Karthikeyan M (2014) Combined sequence and sequence-structure-based methods for analyzing RAAS gene SNPs: a computational approach. J Recept Signal Tranduct Res 34:513–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Rechciński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rechciński, T. (2023). Genetic Polymorphisms in the Renin-Angiotensin-Aldosterone System. In: Dhalla, N.S., Bhullar, S.K., Shah, A.K. (eds) The Renin Angiotensin System in Cardiovascular Disease. Advances in Biochemistry in Health and Disease, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-14952-8_7

Download citation

Publish with us

Policies and ethics