Skip to main content

Central Control of Sympathetic and Renin Angiotensin System in the Development of Hypertension

  • Chapter
  • First Online:
The Renin Angiotensin System in Cardiovascular Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 24))

Abstract

There is now ample evidence to suggest that many diseases are accompanied by chronic elevations of central sympathetic and renin angiotensin systems and a possibility exists that these two distinct systems interact. The present article will specifically focus on (1) central sympathetic system (2) central sympathetic system in the control of blood pressure (3) modulation of central sympathetic system by various neuropeptides 4) central renin angiotensin system (4) interaction between the central sympathetic and renin angiotensin system and finally, (5) a concept that the central mechanisms play a pivotal role in developing hypertension. We believe that renin angiotensin has a stimulatory influence on the sympathetic system, and the central renin angiotensin system may augment catecholamine outflow working on the presynaptic facilitation of sympathetic nerves. It is reasonable to believe that central receptor blockage will be ideal for antihypertensive drugs. Thus, a study on the central receptors of renin angiotensin may be of interest for developing drugs as a newer therapeutic intervention during heightened sympathetic flow. These findings from animal and human studies will be discussed and integrated to provide a concise update on literature reviews and provide insight into the ongoing controversies in these critical areas of hypertension.

www.alfaisal.edu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganguly PK (1991) Catecholamines and heart disease (ed. by PK Ganguly). CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  2. Fisher JP, Young CN, Fadel PJ (2009) Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci 148:5–15

    Article  Google Scholar 

  3. Virani SS, Alonso A, Hugo J, Aparicio HJ et al (2021) Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743

    Google Scholar 

  4. Rhonda M, Cooper-DeHoff JJA (2016) Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 12(2):110–122

    Article  Google Scholar 

  5. Carretero OA, Oparil S (2000) Essential. Hypertension Part I: definition and etiology. Circulation 101(3):329–335

    Google Scholar 

  6. Nakagawa P, Gomez JL, Cigmund CD (2020) The renin angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep 22:7. https://doi.org/10.1007/s11906-019-1011-2

    Article  Google Scholar 

  7. Johnson AK, Xue B (2018) Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 14(12):750–766

    Article  CAS  Google Scholar 

  8. Grassi G, Ram VS (2016) Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens 10(5):457–466

    Article  CAS  Google Scholar 

  9. Mancia G, Grassi G (2014) The autonomic nervous system and hypertension. Circ Res 23;114(11):1804–1814

    Google Scholar 

  10. Folkow B (1989) Sympathetic nervous control of blood pressure. Role in primary hypertension. Am J Hypertens 2(3 Pt 2):103S–111S

    Google Scholar 

  11. de Morais SDB, Shanks J, Zucker IH (2018) Integrative physiological aspects of brain RAS in hypertension. Curr Hypertens Rep 26;20(2):10–15

    Google Scholar 

  12. Hagbarth KE, Vallbo AB (1968) Pulse and respiratory grouping of sympathetic impulses in human muscle nerves. Acta Physiol Scand 74(1):96–108

    Article  CAS  Google Scholar 

  13. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247(1 Pt 1):E21–E28

    CAS  Google Scholar 

  14. Mano T (1997) Microneurography as a tool to investigate sympathetic nerve responses to environmental stress. Aviakosm Ekolog Med 31(1):8–14

    CAS  Google Scholar 

  15. Judy WV, Farrell SK (1979) Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension 6:605–614

    Article  Google Scholar 

  16. Lundin S, Ricksten SE, Thorén P (1984) Renal sympathetic activity in spontaneously hypertensive rats and normotensive controls, as studied by three different methods. Acta Physiol Scand 120(2):265–272

    Article  CAS  Google Scholar 

  17. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G (1998) Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31(1):64–67

    Article  CAS  Google Scholar 

  18. Takahashi H, Yoshika M, Komiyama Y, Nishimura M (2011) The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 34(11):1147–1160

    Article  CAS  Google Scholar 

  19. Jackson L, Eldahshan W, Fagan SC, Ergul A (2018) Within the brain: the renin angiotensin system. Int J Mol Sci 15;19(3):876

    Google Scholar 

  20. Grassi G, Seravalle G, Dell'Oro R, Trevano FQ, Michele Bombelli M, Scopelliti F, Facchini A, Mancia G (2003) CROSS study. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens 21(9):1761–1769

    Google Scholar 

  21. Grassi G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, Gamba PL, Mancia G (2005) Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 48(7):1359–1365

    Article  CAS  Google Scholar 

  22. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G (1988) Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11(1):3–20

    Article  CAS  Google Scholar 

  23. Murray CJL (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 8;388(10053):1659–1724

    Google Scholar 

  24. Cabassi A, Vinci S, Calzolari M, Bruschi G, Borghetti A (1998) Regional sympathetic activity in pre-hypertensive phase of spontaneously hypertensive rats. Life Sci 62(12):1111–1118

    Article  CAS  Google Scholar 

  25. Simms AE, Paton JF, Pickering AE, Allen AM (2009) Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol 1;587(3):597–610

    Google Scholar 

  26. Korner P, Bobik A, Oddie C, Friberg P (1993) Sympathoadrenal system is critical for structural changes in genetic hypertension. Hypertension 22(2):243–252

    Article  CAS  Google Scholar 

  27. Anderson EA, Sinkey CA, Lawton WJ, Mark AL (1989) Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension 14(2):177–183

    Article  CAS  Google Scholar 

  28. NCD Risk Factor Collaboration (NCD-RisC) (2017) Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 7;389(10064):37–55

    Google Scholar 

  29. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G (1998) Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 31(1):68–72

    Article  CAS  Google Scholar 

  30. Grassi G (1998) Role of the sympathetic nervous system in human hypertension. J Hypertens 16(12 Pt 2):1979–1987

    Article  CAS  Google Scholar 

  31. Mancia G, Grassi G, Giannattasio C, Seravalle G (1999) Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34(4 Pt 2):724–728

    Article  CAS  Google Scholar 

  32. Cheng Y, Li Q, Zhang Y, Wen Q, Zhao J (2015) Effects of female sex hormones on expression of the Ang-(1–7)/Mas-R/nNOS pathways in rat brain. Can J Physiol Pharmacol 93(11):993–998

    Article  CAS  Google Scholar 

  33. Yatabe J, Yoneda M, Yatabe MS, Watanabe T, Felder RA, Jose PA, Sanada H (2011) Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology 152(4):1582–1588

    Article  CAS  Google Scholar 

  34. Legat L, Smolders I, Dupont AG (2019) AT1 receptor mediated hypertensive response to Ang II in the nucleus tractus solitarii 0f normotensive rats involves NO dependent local GABA release. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00460

    Article  Google Scholar 

  35. Reckelhoff JF (2001) Gender differences in the regulation of blood pressure. Hypertension 37:1191–1208

    Article  Google Scholar 

  36. Ocaranza MP, Riquelmi JA, Garcia L et al (2020) Counter-regulatory renin angiotensin system in cardiovascular disease. Nature Rev Cardiol 17:116–129

    Article  Google Scholar 

  37. Gelband CH, Sumners C, Lu D, Raizada MK (1998) Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regul Pept 27;73(3):141–147

    Google Scholar 

  38. Vongpatanasin W (2009) Autonomic regulation of blood pressure in menopause. Semin Reprod Med. 27:338–345

    Article  Google Scholar 

  39. Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin angiotensin systems. Physiol Rev 86:747–803. https://doi.org/10.1152/physrev.00036.2005

    Article  CAS  Google Scholar 

  40. Ganguly PK, Chakravarty M (2003) Role of hypothalamic peptides in the development of hypertension. In: Pierce GN, Nagano M, Zahradka P, Dhalla NS (eds) Atherosclerosis, hypertension and diabetes. Kluwer Academic Publishers, Boston, USA

    Google Scholar 

  41. Kirouac G, Ganguly PK (1995) Cholecystokinin-induced release of dopamine in the nucleus accumbens of the spontaneously hypertensive rat. Brain Res 689:245–253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ganguly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguly, P., Almiro, A., Dawalibi, A., Al Mahayni, T., Mohammad, K.S. (2023). Central Control of Sympathetic and Renin Angiotensin System in the Development of Hypertension. In: Dhalla, N.S., Bhullar, S.K., Shah, A.K. (eds) The Renin Angiotensin System in Cardiovascular Disease. Advances in Biochemistry in Health and Disease, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-14952-8_11

Download citation

Publish with us

Policies and ethics