Skip to main content

Irregular Learning Cellular Automata for the Resolution of Complex Logic Puzzles

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

Learning Automata (LA) in combination with Cellular Automata (CA) have been proven to be viable candidates as a mean to deal with problems of high complexity. Their ability to learn and adapt combined with their inherit parallelism can speed-up the solution process of various problems, including complex logic puzzles. A well-known logic puzzle is the Sudoku, which is a combinatorial optimization problem of increased difficulty and complexity. In this work, the representation of a Sudoku puzzle as a Irregular Learning Cellular Automaton (ILCA) has been explored, incorporating the necessary rules of a reward and penalty algorithm as a resolution process. The results prove the successful operation of the proposed algorithm, highlighting the concurrent and learning capabilities of the ILCA structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahangaran, M., Taghizadeh, N., Beigy, H.: Associative cellular learning automata and its applications. Appl. Soft Comput. 53, 1–18 (2017)

    Article  Google Scholar 

  2. Beigy, H., Meybodi, M.R.: A mathematical framework for cellular learning automata. Adv. Compl. Syst. 7(3–4), 295–319 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chatzinikolaou, T.P., et al.: Memristive oscillatory circuits for resolution of np-complete logic puzzles: sudoku case. In: 2020 ISCAS, pp. 1–5 (2020)

    Google Scholar 

  4. Floros, T., Tsakalos, K.A., Dourvas, N., Tsompanas, M.A., Sirakoulis, G.C.: Unconventional bio-inspired model for design of logic gates. Int. J. Unconvent. Comput. 15(3), 141–156 (2020)

    Google Scholar 

  5. Hufkens, L.V., Browne, C.: A functional taxonomy of logic puzzles. In: 2019 IEEE Conference on Games (CoG), pp. 1–4. IEEE (2019)

    Google Scholar 

  6. Ioannidis, K., Sirakoulis, G.C., Andreadis, I.: A cellular automaton collision-free path planner suitable for cooperative robots. In: 2008 Panhellenic Conference on Informatics, pp. 256–260 (2008)

    Google Scholar 

  7. Karamani, R.E., Fyrigos, I.A., Tsakalos, K.A., Ntinas, V., Tsompanas, M.A., Sirakoulis, G.C.: Memristive learning cellular automata for edge detection. Chaos Solitons Fractals 145, 110700 (2021)

    Article  MathSciNet  Google Scholar 

  8. Lewis, R.: Metaheuristics can solve sudoku puzzles. J. Heurist. 13(4), 387–401 (2007)

    Article  Google Scholar 

  9. Lynce, I., Ouaknine, J.: Sudoku as a sat problem. ISAIM 11(1), 6–13 (2006)

    Google Scholar 

  10. Mantere, T., Koljonen, J.: Solving, rating and generating sudoku puzzles with GA. In: 2007 IEEE Congress on Evolutionary Computation, pp. 1382–1389 (2007)

    Google Scholar 

  11. Mitsopoulou, M., Dourvas, N.I., Sirakoulis, G.C., Nishinari, K.: Spatial games and memory effects on crowd evacuation behavior with cellular automata. J. Comput. Sci. 32, 87–98 (2019)

    Article  Google Scholar 

  12. Mozafari, M., Shiri, M.E., Beigy, H.: A cooperative learning method based on cellular learning automata and its application in optimization problems. J. Comput. Sci. 11, 279–288 (2015)

    Article  Google Scholar 

  13. Narendra, K.S., Thathachar, M.A.L.: Learning automata - a survey. IEEE Trans. Syst. Man Cybern. SMC 4(4), 323–334 (1974)

    Article  MathSciNet  Google Scholar 

  14. Pacurib, J.A., Seno, G.M.M., Yusiong, J.P.T.: Solving sudoku puzzles using improved artificial bee colony algorithm. In: ICICIC 2009, pp. 885–888. IEEE (2009)

    Google Scholar 

  15. Russell, E., Jarvis, F.: Mathematics of Sudoku II. Math. Spect. 39(2), 54–58 (2006)

    Google Scholar 

  16. Simonis, H.: Sudoku as a constraint problem. In: CP Workshop on Modeling and Reformulating Constraint Satisfaction Problems, vol. 12, pp. 13–27. Citeseer (2005)

    Google Scholar 

  17. Torkestani, J.A., Meybodi, M.R.: A cellular learning automata-based algorithm for solving the vertex coloring problem. Exp. Syst. Appl. 38(8), 9237–9247 (2011)

    Article  Google Scholar 

  18. Tsompanas, M.-A.I., Dourvas, N.I., Ioannidis, K., Sirakoulis, G.Ch., Hoffmann, R., Adamatzky, A.: Cellular automata applications in shortest path problem. In: Adamatzky, A. (ed.) Shortest Path Solvers. From Software to Wetware. ECC, vol. 32, pp. 199–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77510-4_8

  19. Vamsi, K.S., Gangadharabhotla, S., Sai, V.S.H.: A deep learning approach to solve sudoku puzzle. In: 2021 ICICCS, pp. 1175–1179. IEEE (2021)

    Google Scholar 

  20. Van Der Bok, K., Taouil, M., Afratis, P., Sourdis, I.: The TU Delft sudoku solver on FPGA. In: 2009 International Conference on Field-Programmable Technology, pp. 526–529. IEEE (2009)

    Google Scholar 

Download references

Acknowledgments

The work of Rafailia-Eleni Karamani was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzinikolaou, T.P., Karamani, RE., Sirakoulis, G.C. (2022). Irregular Learning Cellular Automata for the Resolution of Complex Logic Puzzles. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics