Skip to main content

Maximum Traffic Flow Patterns in Interacting Autonomous Vehicles

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

We consider the auto-organization of a set of autonomous vehicles following each other on either an infinite or circular road. The behavior of each car is specified by its “speed regulator”, a device that decides to increase or decrease the speed of the car as a function of the head-tail distance to its predecessor and the speed of both cars. A collective behavior emerges that corresponds to previously proposed cellular automata traffic models. We further analyze the traffic patterns of the system in the long term, as governed by the speed regulator and we study under which conditions traffic patterns of maximum flow can or cannot be reach. We show the existence of suboptimal flow conditions that require external coordination mechanisms (that we don not consider in this paper) in order to reach the optimal flow achievable with the given density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, R., Kocarev, L.: A unifying definition of synchronization for dynamical systems. Chaos Interdisc. J. Nonlinear Sci. 10(2), 344–349 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chacoma, A., Abramson, G., Kuperman, M.N.: A phase transition induced by traffic lights on a single lane road. Phys. A 568, 125763 (2021)

    Article  Google Scholar 

  3. Chou, F.-C., Bagabaldo, A.R., Bayen, A.M.: The lord of the ring road: a review and evaluation of autonomous control policies for traffic in a ring road. ACM Trans. Cyber-Phys. Syst. (TCPS) 6(1), 1–25 (2022)

    Article  Google Scholar 

  4. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Phys. A 371(2), 674–682 (2006)

    Article  Google Scholar 

  5. Hanumappa, D., Ramachandran, P.: Cellular automata model for mixed traffic flow with lane changing behavior. Model. Simul. Eng. 2021 (2021)

    Google Scholar 

  6. Jiang, R., Qing-Song, W.: Phase transition at an on-ramp in the Nagel-Schreckenberg traffic flow model. Phys. A 366, 523–529 (2006)

    Article  Google Scholar 

  7. Karakhi, A., Laarej, A., Khallouk, A., Lakouari, N., Ez-Zahraouy, H.: Car accident in synchronized traffic flow: a stochastic cellular automaton model. Int. J. Mod. Phys. C 32(01), 2150011 (2021)

    Article  MathSciNet  Google Scholar 

  8. Kerner, B.S.: The physics of traffic. Phys. World 12(8), 25 (1999)

    Article  Google Scholar 

  9. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory. J. Phys. A Math. Gen. 35(47), 9971 (2002)

    Article  MathSciNet  Google Scholar 

  10. Kerner, B.S.: The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory. Understanding Complex Systems, Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40986-1

    Book  Google Scholar 

  11. Kerner, B.S.: Understanding Real Traffic: Paradigm Shift in Transportation Science. Understanding Complex Systems, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79602-0

    Book  Google Scholar 

  12. Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical restriction versus human overreaction triggering congested traffic states. Phys. Rev. Lett. 92(23), 238702 (2004)

    Article  Google Scholar 

  13. Meng, J., Dai, S., Dong, L., Zhang, J.: Cellular automaton model for mixed traffic flow with motorcycles. Phys. A 380, 470–480 (2007)

    Article  Google Scholar 

  14. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  15. Naito, Y., Nagatani, T.: Effect of headway and velocity on safety-collision transition induced by lane changing in traffic flow. Phys. A 391(4), 1626–1635 (2012)

    Article  Google Scholar 

  16. Nishinari, K., Fukui, M., Schadschneider, A.: A stochastic cellular automaton model for traffic flow with multiple metastable states. J. Phys. A Math. Gen. 37(9), 3101 (2004)

    Article  MathSciNet  Google Scholar 

  17. Qian, Y.-S., Feng, X., Zeng, J.-W.: A cellular automata traffic flow model for three-phase theory. Phys. A 479, 509–526 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sugiyama, Y., et al.: Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)

    Article  Google Scholar 

  19. Tian, J., Jia, B., Li, X., Jiang, R., Zhao, X., Gao, Z.: Synchronized traffic flow simulating with cellular automata model. Phys. A 388(23), 4827–4837 (2009)

    Article  Google Scholar 

  20. Tian, J., Zhu, C., Jiang, R., Treiber, M.: Review of the cellular automata models for reproducing synchronized traffic flow. Transportmetrica A Transp. Sci. 17(4), 766–800 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, N., Chopard, B., Leone, P. (2022). Maximum Traffic Flow Patterns in Interacting Autonomous Vehicles. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics