Skip to main content

Scandinavia

  • Chapter
  • First Online:
Periglacial Landscapes of Europe

Abstract

Periglaciation in Scandinavia is reviewed with a focus on active and relict landforms, frost processes, permafrost distribution and landform age in plateau, steepland, low-gradient, and glacier-foreland landscapes. Scandinavian periglacial landscapes are conceptualized as complex palimpsests in a continually changing environment. Distinctive aspects in the context of Europe are emphasized and some important general periglacial research problems are highlighted. Many types of landforms are relict, at least in part, despite extensive areas where permafrost exists today, and the even more widespread occurrence of seasonal frost. Elements of the plateau landscapes and the coastal strandflat are of pre-Pleistocene age, although they owe much of their present character to frost weathering processes. Some landform types, such as blockfields, tors and cryoplanation terraces, originated before the Last (Weichselian) Glaciation and were preserved beneath Pleistocene cold-based ice sheets. Many large rock-slope failures, rock glaciers, large-scale sorted circles, raised coastal rock platforms and inland parabolic dunes are Late Weichselian or relict paraglacial features. Currently active landforms and processes, such as debris flows, solifluction, slope wash, palsas, earth hummocks, small rock-slope failures, snow-avalanche landforms and dune re-activation, continue to experience significant changes in activity in response to Holocene and anthropocene climatic variations and resulting shifts in the altitudinal limits of permafrost and seasonal frost. Altitudinal zonation of periglacial landforms is problematic because of difficulties in separating active from relict forms. Active landforms on glacier forelands, such as sorted patterned ground, may provide modern analogues for interpreting larger-scale relict features. Scandinavian periglacial landscapes have played and will likely continue to occupy an indispensable and influential position in the development of knowledge and understanding of the periglacial landscapes of Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto J, Venäläinen A, Heikkinen RK, Luoto M (2014) Potential for extreme loss in high-latitude Earth surface processes due to climate change. Geophys Res Lett 41:3914–3924

    Google Scholar 

  • Aalto J, Harrison S, Luoto M (2017) Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100. Nat Commun 8(1):1–8

    Google Scholar 

  • Aarseth I, Fosen H (2004a) A Holocene lacustrine platform around Storavatnet, Osterøy, western Norway. Holocene 14:589–596

    Google Scholar 

  • Aarseth I, Fosen H (2004b) Late Quaternary lacustrine cryoplanation of rock surfaces in and around Bergen, Norway. Norw J Geol 84:125–137

    Google Scholar 

  • Aartolahti T (1972) Dyynien routahalkeamista ja routahalkeamapolygoneista (English summary: Frost cracks and frost polygons on dunes in Finland). Terra 84:124–131

    Google Scholar 

  • Alestalo J (1980) Systems of ice movement on Lake Lappajärvi, Finland. Fennia 158:27–39

    Google Scholar 

  • Alestalo J, Häikiö J (1975) Ice features and ice-thrust shore forms at Luodonselkä, Gulf of Bothnia, in winter 1972/73. Fennia 144:1–24

    Google Scholar 

  • Åhman R (1976) The structure and morphology of minerogenic palsas in northern Norway. Biul Peryglac 26:25–31

    Google Scholar 

  • Åhman R (1977) Palsar i Nordnorge. Meddelanden från Lunds Universitets Geografika Institution Avhandlingar 78:1–165

    Google Scholar 

  • Åkerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost Periglac Process 19:279–292

    Google Scholar 

  • Alestalo J, Häikiö J (1979) Forms created by thermal movement of lake ice in Finland in winter 1972–73. Fennia 157:51–92

    Google Scholar 

  • Andersen BG (1968) Glcial geology of western Troms, north Norway. Nor Geol Unders 256:1–160

    Google Scholar 

  • Andersen JL, Egholm DL, Knudsen MF, Linge H, Jansen JD, Pedersen VK, Nielsen SB, Tikhomirov D, Olsen J, Fabel D, Xu S (2018) Widespread erosion on high plateaus during recent glaciations in Scandinavia. Nat Commun 9:830. https://doi.org/10.1028/$41467-018-03280-2

    Article  Google Scholar 

  • Andersen JL, Egholm DL, Knudsen MF, Linge H, Jansen JD, Goodfellow BW, Pedersen VK, Tikhomirov D, Olsen J, Fredin O (2019) Pleistocene evolution of a Scandinavian plateau landscape. J Geophys Res Earth Surf 123. https://doi.org/10.1029/2018JF004670

  • Andersson JG (1906) Solifluction: a component of subaerial denudation. J Geol 14:91–112

    Google Scholar 

  • André MF (2002) Rates of postglacial rock weathering on glacially scoured outcrops (Abisko-Riksgrånsen area, 68° N). Geogr Ann Ser (Phys Geogr) 64:139–150

    Google Scholar 

  • André M-F (2003) Do periglacial landscapes evolve under periglacial conditions? Geomorphology 52:149–164

    Google Scholar 

  • André, M-F (2009) From climate to global change geomorphology: contemporary shifts in periglacial geomorphology. In Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320. Geological Society, London, Special Publication, pp 5–28

    Google Scholar 

  • Ballantyne CK (1987) Some observations on the morphology and sedimentology of two active protalus ramparts, Lyngen, northern Norway. Arct Alp Res 19:167–174

    Google Scholar 

  • Ballantyne CK (1995) Paraglacial debris cone formation on recently deglaciated terrain. Holocene 5:25–33

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017

    Google Scholar 

  • Ballantyne CK (2010) A general model for autochthonous blockfield evolution. Permafrost Periglac Process 21:289–300

    Google Scholar 

  • Ballantyne CK (2018) Periglacial geomorphology. Wiley-Blackwell, Chichester

    Google Scholar 

  • Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following glacial retreat, Fåbergatølsbreen, Norway. Arct Alp Res 26:255–269

    Google Scholar 

  • Ballantyne CK, Benn DI (1996) Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. In: Anderson MG, Brooks S (eds) Advances in hillslope processes, vol 2. Wiley, Chichester, pp 1173–1195

    Google Scholar 

  • Ballantyne CK, Matthews JA (1982) The development of sorted circles on recently deglaciated terrain, Jotunheimen, Norway. Arct Alp Res 14:341–354

    Google Scholar 

  • Ballantyne CK, Matthews JA (1983) Desiccation cracking and sorted polygon development, Jotunheimen, Norway. Arct Alp Res 15:339–349

    Google Scholar 

  • Barsch D (1971) Rock glaciers and ice-cored moraines. Geogr Ann Ser (Phys Geogr) 53:203–206

    Google Scholar 

  • Barsch D (1977) Nature and importance of mass wasting by rock glaciers in alpine permafrost environments. Earth Surf Proc Land 2:231–245

    Google Scholar 

  • Barsch D, Treter U (1976) Zur Verbreitung von Periglazialphänomenen in Rondane/Norwegen. Geogr Ann Ser (Phys Geogr) 58:83–89

    Google Scholar 

  • Beldring S, Engen-Skaugen T, Førland EJ, Roald LA (2008) Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites. Tellus (Dyn Meteorol Ocean) 60(3):439–450

    Google Scholar 

  • Bellwald B, Hjelstuen BO, Sejrup HP, Stokowy T, Kuvås (2019) Holocene mass movments in west and mid-Norwegian fjords and lakes. Mari Geol 407:192–212

    Google Scholar 

  • Berthling I, Etzelmüller B (2011) The concept of cryoconditioning in landscape evolution. Quat Res 75:378–384

    Google Scholar 

  • Berthling I, Shomacker A, Benediktsson ÍÖ (2013) The glacial and periglacial research frontier: where from here? In: Giardino JR, Harbor JM (eds) Treatise on geomorphology, volume 8, glacial and periglacial geomorphology. Academic Press, San Diego, CA, pp 479–498

    Google Scholar 

  • Beskow G (1935) Tjälbildningen och tjällyftningen med särskild hänsyn till vägar och järnvägar. Sveriges Geologiska Unersökning Avhandlingar och Uppsatser, Arsbok 26, Ser C 375:1–242

    Google Scholar 

  • Beskow G (1947) Soil freezing and frost heaving with special applications to roads and railroads. Northwestern University Technological Institute: Evanston, IL. [English translation of Beskow (1935) by JO Osterberg.]

    Google Scholar 

  • Beylich AA (2011) Mass transfers, sediment budgets and relief development in cold environments: results of long-term geomorphologic drainage basin stidies in Iceland, Swedish Lapland and Finnish Lapland. Zeitschrift Für Geomorphologie NF 55:145–174

    Google Scholar 

  • Beylich AA, Laute K (2012) Spatial variations of surface water chemistry and chemical denudation in the Erdalen drainage basin, Nordfjord, western Norway. Geomorphology 167–168:77–90

    Google Scholar 

  • Beylich AA, Laute K (2018) Morphoclimatic controls of contemporary chemical and mechanical denudation in a borel-oceanic drainage basin system in central Norway (Homla drainage basin, Trøndelag). Geogr Ann Ser (Phys Geogr) 100:116–139

    Google Scholar 

  • Beylich AA, Laute K (2021) Fluvial processes and contemporary fluvial denudation in different mountain landscapes in western and central Norway. In: Beylich AA (ed) Landscapes and landforms of Norway. Springer, Berlin, pp 147–168

    Google Scholar 

  • Beylich AA, Kolstrup E, Thysted T, Gintz D (2004) Water chemistry and its diversity in relation to local factors in the Latnajavagge drainage basin, arctic-oceanic Swedish Lapland. Geomorphology 58:125–143

    Google Scholar 

  • Beylich AA, Molau U, Luthbom K, Gintz D (2005) Rates of chemical and mechanical fluvial denudation in an arctic-oceanic periglacial environment, Latnajavagge drainage basin, northernmost Swedish Lapland. Arct Antarct Alp Res 37:75–87

    Google Scholar 

  • Blikra LH, Christiansen HH (2014) A field-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology 208:34–49

    Google Scholar 

  • Blikra LH, Nemec W (1993) Postglacial avalanche activity in western Norway: depositional facies sequences, chronostratigraphy and palaeoclimatic implications. In: Frenzel B, Matthews JA, Gläser B (eds) Soliflucton and climatic variation in the Holocene. Gustav Fischer Verlag, Stuttgart, pp 143–162

    Google Scholar 

  • Blikra LH, Nemec W (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoenvironmental record. Sedimentology 45:909–959

    Google Scholar 

  • Blikra LH, Nesje A (1997) Holocene avalanche activity in western Norway: chronostratigraphy and palaeoclimatic implications. In Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß (eds) Rapid mass movement as a source of climatic evidence for the Holocene. Gustav Fischer Verlag: Stuttgart, pp 299–312.

    Google Scholar 

  • Blikra LH, Hole PA, Rye N (1994) Hurtige Massebevegelser og avsetningstyper i alpiner områder, Indre Nordfjord. Nor Geol Unders Skr 92:1–17

    Google Scholar 

  • Blikra LH, Selvik SF (1998) Climatic signals recorded in snow avalanche-dominated colluvium in western Norway: depositional facies successions and pollen records. Holocene 8:631–658

    Google Scholar 

  • Boch SG, Krasnov II (1943) O nagornykh terraskh i drevnikh poverkhnostyakh vyravnivaniya na Urale i svyazannykh s nimi problemakh. Vsesoyuznogo Geograficheskogo obshchestva Izvestiya 75:14–25. [Translated from Russian (1994) On altiplanation terraces and ancient surfaces of levelling in the Urals and associated problems. In Evans DJA (ed) Cold climate landforms. Wiley, Chichester, pp 177–204.]

    Google Scholar 

  • Bøe AG, Dahl SO, Lie Ø, Nesje A (2006) Holocene river floods in the upper Glomma catchment, southern Norway: high resolution multiproxy record from lacustrine sediments. Holocene 16:445–455

    Google Scholar 

  • Böhme M, Oppikofer T, Longva O, Jaboyedon M, Hermanns RL, Derron MH (2015) Analyses of past and present rock slope instabilities in a fjord valley: implications for hazard estimations. Geomorphology 248:464–474

    Google Scholar 

  • Borge AF, Westermann S, Solheim I, Etzelmüller B (2017) Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11:1–16

    Google Scholar 

  • Byrne M-L, Dionne J-C (2002) Typical aspects of cold regions shorelines. In Hewitt K, Byrne M-L, English M, Young G (eds) Landscapes of transition: landform assemblages and transformations in cold regions. Kluwer, Dordrecht, pp 141–158

    Google Scholar 

  • Christiansen HH (1998) Nivation forms and processes in unconsolidated sediments, NE Greenland. Earth Surf Proc Land 23:751–760

    Google Scholar 

  • Christiansen HH, Svensson H (1998) Windpolished boulders as indicators of a Late Weichselian wind regime in Denmark in relation to neighbouring areas. Permafrost Periglac Process 9:1–21

    Google Scholar 

  • Christiansen HH, Etzelmüller B, Isakssen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sidsgaard C, Åkerman HJ, Foged N, Blikra LH, Pernosky MA, Ødegård RS (2010) The thermal state of permafrost in the Nordic area during the international polar year 2007–2009. Permafrost Periglac Process 21:156–181

    Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3072

    Google Scholar 

  • Clark MJ, Seppälä M (1988) Slushflows in a subarctic environment, Kilpisjarvi, Finland. Arct Alp Res 20:97–105

    Google Scholar 

  • Corner GD (1980) Avalanche impact landforms in Troms, North Norway. Geogr Ann Ser (Phys Geogr) 62:1–4

    Google Scholar 

  • Corner GD (2005a) Scandes mountains. In: Seppälä M (ed) The physical geography of Fennoscandia. Wiley-Blackwell, Chichester, pp 229–254

    Google Scholar 

  • Corner GD (2005b) Atlantic coasts and fjords. In: Seppälä M (ed) The physical geography of Fennoscandia. Wiley-Blackwell, Chichester, pp 203–228

    Google Scholar 

  • Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer Verlag, Berlin, pp 268–317

    Google Scholar 

  • Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228

    Google Scholar 

  • Curry AM (2000) Observations on the distribution of paraglacial reworking of glacigenic drift in western Norway. Nor Geogr Tidsskr 54:139–147

    Google Scholar 

  • Curry AM (2021) Paraglacial rock-slope failure following deglaciation in Western Norway. In Beylich AA (ed) Landscapes and landforms of Norway. Springer Nature: Cham, pp 97–130.

    Google Scholar 

  • Curry AM, Ballantyne CK (1999) Paraglacial modification of glacigenic sediments. Geogr Ann Ser (Phys Geogr) 81:409–419

    Google Scholar 

  • Darmody RG, Thorn CE (1997) Elevation, age, soil development, and chemical weathering at Storbreen, Jotunheimen. Geogr Ann Ser (Phys Geogr) 79:215–222

    Google Scholar 

  • Darmody RG, Thorn CE, Harder RL, Schlyter JPL, Dixon JC (2000) Weathering implications of water chemistry in an arctic-alpine environment, northern Sweden. Geomorphology 34:89–100

    Google Scholar 

  • Darmody RG, Thorn CE, Seppålå M, Campbell SW, Li YK, Harbor J (2008) Age and weathering status of granite tors in Arctic Finland (~68°N). Geomorphology 94:10–23

    Google Scholar 

  • Dawson AG (1979) Polar and non-polar shore platform development. Department of Geography, Bedford College (University of London). Pap Geogr 6:1–28

    Google Scholar 

  • Dawson AG, Matthews JA, Shakesby RA (1987) Rock platform erosion on periglacial shores: a modern analogue for Pleistocene rock platforms in Britain. In: Boardman J (ed) Periglacial processes and landforms in Britain and Ireland. Cambridge University Press, Cambridge, pp 173–182

    Google Scholar 

  • De Haas T, Kleinhaus MG, Carbonneau PE, Rubensdottir L, Hauber E (2015) Morphology of fans in the high-arctic periglacial environment of Svalbard: controls and processes. Earth Sci Rev 146:163–182

    Google Scholar 

  • Decaulne A, Eggertsson Ó, Laute K, Beylich AA (2014) A 100-year extreme snow-avalanche record based on tree-ring rsearch in upper Bødalen, inner Nordfjord, western Norway. Geomorphology 218:3–15

    Google Scholar 

  • Demek J (1969) Cryoplanation terraces, their geographical distribution, genesis and development. Rozpravy Ĉeskoslovenské Akademie Věd, Rada Matematických a Prírodních Věd Rocnik 79(4):1–80

    Google Scholar 

  • Eichel J, Draebling D, Klingbeil L, Wieland M, Wling C, Schmidtlein S, Kuhlmann H, Dikau R (2017) Solifluction meets vegetation: the role of biogeomorphic feedbacks for turf-banked solifluction lobe development. Earth Surf Proc Land 42:1623–1635

    Google Scholar 

  • Elliott G, Worsley P (1999) The sedimentology, stratigraphy and 14C dating of a turf-banked solifluction lobe: evidence for Holocene slope instability at Okstindan, northern Norway. J Quat Sci 14:175–188

    Google Scholar 

  • Elliott G, Worsley P (2012) A solifluction lobe in Okstindan, north Norway and its paleoclimatic significance. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineering slopes: protecting society through improved understanding. Taylor & Francis, London, pp 437–442

    Google Scholar 

  • Ellis S (1979) Radiocarbon dating evidence for the initiation of solifluction ca. 5500 years B.P. at Okstindan, north Norway. Geogr Ann Ser (Phys Geogr) 61:29–33

    Google Scholar 

  • Ellis S (1983) Stratigraphy and 14C dating of two earth hummocks, Jotunheimen, south central Norway. Geogr Ann Ser (Phys Geogr) 65:279–287

    Google Scholar 

  • Engeland K, Aano A, Steffensen I, Støren E, Paasche Ø (2020) New flood frequency estimates for the largest river in Norway based on the combination of short and long time series. Hydrol Earth Syst Sci 24:5595–5619

    Google Scholar 

  • Enquist F (1916) Die Einfluss des Windes auf die Verteilung der Gletscher. Bull Geol Inst Univ Upps 14:1–108

    Google Scholar 

  • Eriksen HØ, Rouyet L, Lauknes TR, Berthling I, Isaksen K, Hindberg H, Larsen Y, Corner GD (2018) Recent acceleration of a rock glacier complex, Ádjet, Norway, documented by 62 years of remote sensing observations. Geophys Res Lett 45(16):8314–8323

    Google Scholar 

  • Etzelmüller B, Berthling I, Sollid JL (2003) Aspects and concepts on the geomorphological significance of Holocene permafrost in southern Norway. Geomorphology 52:87–104

    Google Scholar 

  • Etzelmüller B, Hagen JO (2005) Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. In Harris C, Murton JB (eds) Cryospheric systems: glaciers and permafrost, vol 242. Geological Society, London, Special Publication, pp 11–27

    Google Scholar 

  • Etzelmüller B, Romstad B, Fjellanger J (2007) Automated regional classification of topography in Norway. Norw J Geol 87:167–180

    Google Scholar 

  • Etzelmüller B, Guglielmin M, Hauck C, Hilbich C, Hoelzle M, Isaksen K, Noetzli J, Oliva M, Ramos M (2020) Twenty years of European mountain permafrost dynamics–the PACE legacy. Environ Res Lett 15: Article No. 104070.

    Google Scholar 

  • Etzelmüller B, Czekirda J, Magnin F, Duvillard P-A, Malet E, Ravanel L, Aspaas A, Kristensen L, Skrede I, Majala D, Jacobs B, Leinauer J, Hauck C, Hilbich C, Böhme M, Hermanns R, Eriksen HØ, Krautblatter M, Westermann S (2021) Permafrost in monitored unstable rock slopes in Norway—new insights from rock wall temperature monitoring, geophysical surveying and numerical modelling. Earth Surf Dyn Discuss. https://doi.org/10.5194/esurf-2021-10

    Article  Google Scholar 

  • Fabel B, Stroeven AP, Harbor J, Kleman J, Elmore D, Fink D (2002) Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth Planet Sci Lett 201:397–406

    Google Scholar 

  • Farbrot H, Hipp TF, Etzelmüller B, Isaksen K, Ødegård RS, Schuler TV, Humlum O (2011) Air and ground-temperature variations observed along elevation and continentality gradients in southern Norway. Permafrost Periglac Process 22:343–360

    Google Scholar 

  • Fredin O (2002) Glacial incepton and Quaternary mountain glaciations in Fennoscandia. Quat Int 95–96:99–112

    Google Scholar 

  • Fredin O, Viola G, Zwingmann H, Sørlie R, Brönner M, Lie J-E, Grandal EM, Müller A, Margreth A, Vogt C, Knies J (2017) The inheritance of a Mesozoic landscape in western Scandinavia. Nature Communications 8: Article No. 14879, pp 1–11.

    Google Scholar 

  • French HM (2008) Periglacial processes and forms. In: Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) The history of the study of landforms or the development of geomorphology, vol 4. The Geological Society, London, pp 622–676

    Google Scholar 

  • French HM (2018) The periglacial environment. Wiley-Blackwell, Chichester

    Google Scholar 

  • French HM, Karte J (1988) A periglacial overview. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 463–473

    Google Scholar 

  • French HM, Thorn CE (2006) The changing nature of periglacial geomorphology. Géomorphologie: Relief Process Environ 3:165–174

    Google Scholar 

  • Fries TCE, Bergström E (1910) Några iakttagelser öfver palsar och deras förekomst i nordligaste Sverige. Geol Föreningen I Stock Förhandlingar 32:195–205

    Google Scholar 

  • Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Climate Res 32:1–12

    Google Scholar 

  • Fronzek S, Carter TR, Räisänen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Clim Change 99:515–534

    Google Scholar 

  • Gisnås K, Etzelmüller B, Lussana C, Hjort J, Sannel ABK, Isaksen K, Westermann S, Kuhry P. Christiansen H, Frampton A, Åkerman J (2017) Permafrost map for Norway, Sweden and Finland. Permafr Periglacial Process 28:359–378

    Google Scholar 

  • Gjessing J (1967) Norway’s palaeic surface. Nor Geogr Tidsskr 21:69–132

    Google Scholar 

  • Goodfellow BW (2012) A granulometry and secondary mineral fingerprint of chemical weathering in periglacial landscapes and its application to blockfield origins. Quat Sci Rev 57:121–135

    Google Scholar 

  • Goodfellow BW, Strøeven AP, Fabel D, Fredin O, Derron M-H, Bintanja R, Caffee MW (2014) Arctic-alpine blockfields in the northern Swedish Scandes: late Quaternary—not Neogene. Earth Surf Dyn 2:383–401

    Google Scholar 

  • Grab S (2005) Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thúfur, pounus): miniature cryogenic mounds. Prog Phys Geogr 29:139–155

    Google Scholar 

  • Guilcher A, Bodéré J-C, Coudé A, Hansom JD, Moign A, Peulvast J-P (1986) Le problème des strandflats en cinq pays de hautes latitudes. Rev Géol Dynam Géog Phys 27:47–79

    Google Scholar 

  • Gurney SD (2001) Aspects of the genesis, geomorphology and terminology of palsas: perennial cryogenic mounds. Prog Phys Geogr 25:249–260

    Google Scholar 

  • Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 77:1–142

    Google Scholar 

  • Hall K (1998) Nivation or cryoplanation: different terms, same features? Polar Geogr 22:1–16

    Google Scholar 

  • Hansom JD, Forbes DL, Etienne S (2014) The rock coasts of polar and sub-polar regions. In Kennedy DM, Stephenson JJ, Naylor LA (eds) Rock coast geomorphology: a global synthesis, vol 40. Geological Society of London, Memoirs, pp 263–281

    Google Scholar 

  • Harris C (1982) The distribution and altitudinal zonation of periglacial landforms, Okstindan, Norway. Zeitschrift Für Geomorphologie NF 26:283–304

    Google Scholar 

  • Harris C (1986) Some observations concerning the morphology and sedimentology of a protalus rampart, Okstindan, Norway. Earth Surf Proc Land 11:673–676

    Google Scholar 

  • Harris C, Matthews JA (1984) Some observations on boulder-cored frost boils. Geogr J 150:63–73

    Google Scholar 

  • Harris C, Murton JB (2005) Interactions between glaciers and permafrost: an introduction. In Harris C, Murton JB (eds) Cryospheric systems: glaciers and permafrost, vol 242. Geological Society, London, Special Publication, pp 1–9

    Google Scholar 

  • Harris C, Kern-Luetschg M, Smith F, Isaksen K (2008) Solifluction processes in an area of seasonal ground freezing, Dovrefjell, Norway. Permafrost Periglac Process 19:31–47

    Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hoelzle M, Humlum O, Isaksen K, Kääb A, Kern-Luetschg MA, Lehning M, Matsuoka N, Murton JB, Noezli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll DV (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171

    Google Scholar 

  • Harris SA, Brouchkov A, Guodong C (2018) Geocryology: characteristics and use of frozen ground and permafrost landforms. CRC Press-Balkema, Leiden

    Google Scholar 

  • Hättestrand C, Stroeven AP (2002) A relict landscape in the centre of the Fennoscandian glaciation: geomorphological evidence of minimal Quaternary glacial erosion. Geomorphology 44:127–143

    Google Scholar 

  • Haugland JE (2004) Formation of patterned ground and fine-scale soil development within two late Holocene glacial chronosequences: Jotunheimen, Norway. Geomorphology 61:287–301

    Google Scholar 

  • Haugland JE (2006) Short-term periglacial processes, vegetation succession, and soil development within sorted patterned ground: Jotunheimen, Norway. Arct, Antarct AlpE Res 38:82–89

    Google Scholar 

  • Haugland JE, Beaty SW (2005) Vegetation establishment, succession and microsite frost disturbance on glacier forelands within patterned ground chronosequences. J Biogeogr 32:145–153

    Google Scholar 

  • Haugland JE, Owen BS (2005) Temporal and spatial variability of soil pH in patterned ground chronosequences: Jotunheimen, Norway. Phys Geogr 26:299–312

    Google Scholar 

  • Haugland JE, Owen-Haugland BS (2008) Cryogenic disturbance and pedogenic lag effects as determined by profile developmental index: the Styggedalsbreen glacier chronosequence, Norway. Geomorphology 96:212–220

    Google Scholar 

  • Heckmann T, Morche D (eds) (2019) Geomorphology of proglacial systems: landforms and sediment dynamics in recently deglaciated alpine landscapes. Springer Nature, Cham.

    Google Scholar 

  • Heikkinen O (2005) Boreal forest and northern and upper timberlines. In: Seppålå M (ed) The physical geography of Fennoscandia. Wiley-Blackwell, Chichester, pp 185–200

    Google Scholar 

  • Heisser M, Scheidl C, Eisl J, Spangl B, Hübl J (2015) Process type identification in torrential catchments in the eastern Swiss Alps. Geomorphology 232:239–247

    Google Scholar 

  • Henderson IHC, Saintot (2011) Regional spatial variations in rockslide distribution from structural geology ranking: an example from Storfjorden, western Norway. In Jaboyedoff M (ed) Slope tectonics, vol 351. Geology Society of London, Special Publications, pp 59–70

    Google Scholar 

  • Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse K, Ivy-Ochs S, Hilger P (2017) Rock-avalanche activity in W and S Norway peaks after the retreat of the Scandinavian ice sheet. In: Mikos M, Vilímek V, Yin Y, Sassa K (eds) Advancing culture of living with landslides, volume 5: Landslides in different environments. Springer, Heidelberg, pp 331–338

    Google Scholar 

  • Hilger P, Hermanns RL, Gosse JC, Jacobs B, Etzelmüller B, Krautblatter M (2018) Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. Holocene 28:1841–1854

    Google Scholar 

  • Hilger P, Hermanns RL, Czekirda J, Myhra KS, Gosse JC, Etzelmüller B (2021) Permafrost as a first order control on long-term rock-slope deformation in (Sub-) Arctic Norway. Quat Sci Rev 251:1–21. Article No. 106718

    Google Scholar 

  • Hipp T, Etzelmüller B, Westermann S (2014) Permafrost in alpine rock faces from Jotunheimen and Hurrungane, southern Norway. Permafrost Periglac Process 25:1–13

    Google Scholar 

  • Hjort J (2006) Environmental factors affecting the occurrence of periglacial landforms in Finnish Lapland: a numerical approach. Shaker Verlag, Aachen

    Google Scholar 

  • Hjort J (2014) Which environmental factors determine recent cryoturbation and solifluction activity in a subarctic landscape? A comparison between active and inactive features. Permafrost Periglac Process 25:136–143

    Google Scholar 

  • Högbom B (1914) Über die geologische Bedeutung des Frostes. Bull Geol Inst Univ Upps 12:251–389

    Google Scholar 

  • Högbom I (1923) Ancient inland dunes of northern and middle Europe. Geogr Ann 5:113–242

    Google Scholar 

  • Högbom B (1927) Beobachtungen aus Nord-Schweden über den Frost als geologischer Factor. Bull Geol Inst Univ Upps 20:1–38

    Google Scholar 

  • Hole PA (1981) Groper danna av snøskred I Sunnylven og tilgrensande områder på Sunnmøre. Førbels resultat. Norsk Geografiske Tidsskrift 35:167–172

    Google Scholar 

  • Holtedahl O (1960) Features of the geomorphology. In Holtedahl O (ed) Geology of Norway. Norges Geologiske Undersøkelse, Trondheim, pp 507–531

    Google Scholar 

  • Holtedahl O (1998) The Norwegian strandflat—a geomorphological puzzle. Nor Geol Tidsskr 78:47–66

    Google Scholar 

  • Hughes AL, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Google Scholar 

  • Humlum O (2008) Alpine and polar periglacial processes: the current state of knowledge. In Kane DL, Hinkel KM (eds) Ninth International Conference on Permafrost, Fairbanks, Alaska, June 29–July 3 2008, pp 753–759

    Google Scholar 

  • Isaksen K, Holmlund P, Sollid JL, Harris C (2001) Three deep alpine permafrost boreholes in Svalbard and Scandinavia. Permafrost Periglac Process 12:13–26

    Google Scholar 

  • Isaksen K, Hauck C, Gudevang E, Ødegård RS, Sollid JL (2002) Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Nor Geogr Tidsskr 56:122–136

    Google Scholar 

  • Jonasson C (1991) Holocene slope processes of periglacial mountain areas in Scandinavia and Poland. Uppsala Universitet Naturgeografiska Institutionen Report 79:1–156

    Google Scholar 

  • Jonasson C, Nyberg R, Rapp A (1997) Dating of rapid mass movements in Scandinavia: talus rockfalls, debris flows and slush avalanches. In Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß (eds) Rapid mass movement as a source of climatic evidence for the Holocene. Gustav Fischer Verlag: Stuttgart, pp 267–282

    Google Scholar 

  • Juliussen H, Humlum O (2007) Preservation of blockfields beneath Pleistocene ice sheets on Sølen and Elgåhogna, central eastern Norway. Z Geomorphol Suppl 51:113–138

    Google Scholar 

  • Kääb A (2013) Rock glaciers and protalus forms. In: Elias SA (ed) Encyclopedia of Quaternary Science, vol 3, 2nd edn. Elsevier, Amterdam, pp 535–541

    Google Scholar 

  • Karjalainen O, Aalto J, Luoto M, Westermann S, Romanovsky VE, Nelson FE, Etzelmüller B, Hjort J (2019) Circunpolar permafrost maps and geohazard indices for near-future infrastructure risk assessment. Sci Data 6(1):1–6

    Google Scholar 

  • Karjalainen O, Luoto M, Aalto J, Etzelmüller B, Grosse G, Jones BM, Lilleøren KS, Hjort J (2020) High potential for loss of permafrost landforms in a changing climate. Environ Res Lett 15(10):104065

    Google Scholar 

  • Karlén W (1988) Scandinavian glacier and climatic fluctuations during the Holocene. Quat Sci Rev 7:199–208

    Google Scholar 

  • Käyhkö JA, Worsley P, Pye K, Clarke ML (1999) A revised chronology for aeolian activity in subarctic Fennoscandia during the Holocene. Holocene 9:195–205

    Google Scholar 

  • Kejonen A (1979) Vuotomaista Muotkatunterien alueella Pohjois-Lapissa. Publ Dep Quat Geol Univ Turku 40:1–43

    Google Scholar 

  • Kergillec R (2015) Characteristics and altitudinal distribution of periglacial decay phenomena in the massif of Rondane, central Norway. Geogr Ann Ser (Phys Geogr) 97:299–315

    Google Scholar 

  • King L (1984) Permafrost in Skandinavien Untersuchungsergebnisse aus Lappland, Jotunheimen und Dovre/Rondane. Heidelberger Geographische Arbeiten 76:1–174

    Google Scholar 

  • King L (1986) Zonation and ecology of high mountain permafrost in Scandinavia. Geogr Ann Ser (Phys Geogr) 68:131–139

    Google Scholar 

  • Kleman J (1992) The palimpsest glacial landscape in northwestern Sweden—late Weichselian deglaciation landforms and traces of older west-centred ice sheets. Geogr Ann Ser (Phys Geogr) 74:305–325

    Google Scholar 

  • Kleman J (1994) Preservation of landforms under ice sheets and ice caps. Geomorphology 9:19–32

    Google Scholar 

  • Kleman J, Hättestrand C (1999) Frozen-bed Fennoscandian and Laurentian ice sheets during the Last Glacial Maximum. Nature 402:63–66

    Google Scholar 

  • Kleman J, Stroeven AP, Lundqvist J (2008) Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation. Geomorphology 97:73–90

    Google Scholar 

  • Klemsdal T (1969) Eolian forms in parts of Norway. Nor Geogr Tidsskr 23:49–66

    Google Scholar 

  • Klemsdal T (1982) Coastal classification and the coast of Norway. Nor Geogr Tidsskr 36:129–152

    Google Scholar 

  • Kolstrup E (2004) Stratigraphic and environmental implications of a large ice-wedge cast at Tjæreborg, Denmark. Permafrost Periglac Process 15:31–40

    Google Scholar 

  • Kotilainen M (2004) Dune stratigraphy as an indicator of Holocene climatic change and human impact in northern Lapland, Finland. Ann Acad Sci Fenn: Geol-Geogr 166:1–156

    Google Scholar 

  • Kristensen L, Czekirda J, Penna I, Etzelmüller B, Nicolet P, Pullarello JS, Blikra LH, Skrede I, Oldani S, Abellan A (2021) Movements, failure and climatic control of the Veslemannen rockslide, Western Norway. Landslides. https://doi.org/10.1007/s10346-020-01609-x

  • Lauriol B, Lamirande I, Lalonde AE (2006) The Giant Steps of Bug Creek, Richardson Mountains, N.W.T., Canada. Permafr Periglac Process 17:267–275

    Google Scholar 

  • Lautridou JP, Ozouf JC (1982) Experimental frost shattering: 15 years of research in the Centre de Géomorphologie du CNRS. Prog Phys Geogr 6:215–232

    Google Scholar 

  • Larsen E, Holtedahl H (1985) The Norwegian strandflat: a reconsideration of its age and origin. Nor Geol Tidsskr 65:247–254

    Google Scholar 

  • Lewis SG, Birnie JF (2001) Little Ice Age alluvial fan development in Langedalen, western Norway. Geogr Ann Ser (Phys Geogr) 83:179–190

    Google Scholar 

  • Lidmar-Bergström K, Ollier CD, Sulebak JR (2000) Landforms and uplift history of southern Norway. Global Planet Change 24:211–231

    Google Scholar 

  • Liestøl O (1974) Avalanche plunge-pool effect. Norsk Polarinstitutt Arbok 1972:179–181

    Google Scholar 

  • Lilleøren KS, Etzelmüller B (2011) A regional inventory of rock glaciers and ice-cored moraines in Norway. Geogr Ann Ser (Phys Geogr) 93:175–191

    Google Scholar 

  • Lilleoren KS, Etzelmuller B, Rouyet L, Eiken T, Hilbich C (2022) Transitional rock glaciers at sea-level in Northern Norway. Earth Surface Dynanics 6

    Google Scholar 

  • Lilleøren KS, Etzelmüller B, Schuler TV, Gisnås K, Humlum O (2012) The relative age of mountain permafrost—estimation of Holocene permafrost limits in Norway. Global Planet Change 92–93:209–223

    Google Scholar 

  • Lind L, Nilsson C, Polvi LE, Weber C (2014) The role of ice dynamics in shaping vegetation in flowing waters. Biol Rev 89:791–804

    Google Scholar 

  • Linge H, Nesje A, Matthews JA, Fabel D, Xu S (2020) Evidence for rapid paraglacial formation of rock glaciers in southern Norway from 10Be surface-exposure dating. Quat Res 97:55–70

    Google Scholar 

  • Liston GE, Elder K (2006) A distributed snow-evolution modelling system. J Hydrometeorol 7:1259–1276

    Google Scholar 

  • Longva O, Blikra LH, Dehls JF (2009) Rock avalanches—distribution and frequencies in the inner part of Storfjorden, Møre og Romsdal County, Norway. NGU Rapport 2009.002. Geological Survey of Norway: Trondheim

    Google Scholar 

  • Lundqvist J (1964) Patterned ground and related forest phenomena in Sweden. Sveriges Geologiska Unersökning Avhandlingar och Uppsatser Ser. C 583, pp 1–101

    Google Scholar 

  • Luoto M, Seppälä M (2002a) Characteristics of earth hummocks (pounus) with and without permafrost in Finnish Lapland. Geogr Ann Ser (Phys Geogr) 84:127–136

    Google Scholar 

  • Luoto M, Seppälä M (2002b) Modelling the distribution of palsas in Finnish Lapland with logistic regression and GIS. Permafrost Periglac Process 13:17–28

    Google Scholar 

  • Luoto M, Seppålå M (2003) Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland. Permafrost Periglac Process 14:19–27

    Google Scholar 

  • Magnin F, Etzelmüller B, Westermann S, Isaksen K, Hilger P, Hermanns RL (2019) Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphic processes. Earth Surf Dyn 7:1019–1040

    Google Scholar 

  • Mangerud J, Aarseth I, Hughes ALC, Lohne ØS, Skår K, Sønstegaard E, Svendsen JI (2016) A major re-growth of the Scandinavian Ice Sheet in western Norway during the Allerød-Younger Dryas. Quat Sci Rev 132:175–205

    Google Scholar 

  • Margold M, Treml V, Petr L, Nyplová P (2011) Snowpatch hollows and pronival ramparts in the Krkonose Mountains, Czech Republic: distribution, morphology and chronology of formation. Geogr Ann Ser (Phys Geogr) 93:137–150

    Google Scholar 

  • Marr P, Löffler G (2018) Establishing a multi-proxy approach to alpine blockfield evolution in south-central Norway. Acta Univ Carol Geogr 52:219–236

    Google Scholar 

  • Marr P, Winkler S, Löffler G (2018) Investigations on blockfields and related landforms at Blåhø (southern Norway) using Schmidt-hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geogr Ann Ser (Phys Geogr) 100:285–306

    Google Scholar 

  • Marr P, Winkler S, Löffler G (2019) Schmidt-hammer exposure-age dating (SHD) performed on periglacial and related landforms in Oppendskedalen, Geirangerfjellet, Norway: implications for mid- and late-Holocene climate variability. Holocene 29:97–109

    Google Scholar 

  • Matsuoka N (2001) Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering. Permafrost Periglac Process 12:299–313

    Google Scholar 

  • Matthews JA (1985) Radiocarbon dating of surface and buried soils: principles, problems and prospects. In Richards KS, Arnett RR, Ellis S (eds) Geomorphology and soils. George Allen & Unwin, London, pp 269–288

    Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Matthews JA (1993) Radiocarbon dating of buried soils with particular reference to Holocene solifluction. In: Frenzel B, Matthews JA, Gläser B (eds) Soliflucton and climatic variation in the Holocene. Gustav Fischer Verlag, Stuttgart, pp 309–324

    Google Scholar 

  • Matthews JA (1999) Disturbance regimes and ecosystem response on recently-deglaciated substrates. In: Walker R (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 17–37

    Google Scholar 

  • Matthews JA, Karlén W (1992) Asynchronous neoglaciation and Holocene climatic change reconstructed from Norwegian glaciolacustrine sedimentary sequences. Geology 20:991–994

    Google Scholar 

  • Matthews JA, McCarroll D (1994) Snow-avalanche impact landforms in Breheimen, southern Norway: origin, age and paleoclimatic implications. Arct Alp Res 26:103–115

    Google Scholar 

  • Matthews JA, Owen G (2008) Endolithic lichens, rapid biological weathering and Schmidt hammer R-values on recently exposed rock surfaces: Storbreen glacier foreland, Jotunheimen, Norway. Geogr Ann Ser (Phys Geogr) 90:187–297

    Google Scholar 

  • Matthews JA, Owen G (2011) Holocene chemical weathering, surface lowering and rock weakening rates from glacially-eroded bedrock surfaces in an alpine periglacial environment, Jotunheimen, southern Norway. Permafrost Periglac Process 22:279–290

    Google Scholar 

  • Matthews JA, Owen G (2021) The snow-avalanche impact landforms of Vestlandet, southern Norway. In: Beylich AA (ed) Landscapes and landforms of Norway. Springer, Berlin, pp 131–145

    Google Scholar 

  • Matthews JA, Seppälä, M (2014) Holocene environmental change in subarctic aeolian dunefields: the chronology of sand dune re-activation events in relation to forest fires, palaeosol development and climatic variations in Finnish Lapland. Holocene 24:149–164

    Google Scholar 

  • Matthews JA, Seppälä M (2015) Holocene colluvial chronology in a sub-arctic esker landscape at Kuttanen, Finnish Lapland: kettle holes as geo-ecological archives of interactions amongst fire, vegetation, soil, climate and geomorphological instability. Boreas 44:343–367

    Google Scholar 

  • Matthews JA, Vater AE (2015) Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. Catena 135:219–230

    Google Scholar 

  • Matthews JA, Wilson P (2015) Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway and their palaeoenvironmental implications. Geomorphology 246:7–21

    Google Scholar 

  • Matthews JA, Harris C, Ballantyne CK (1986a) Studies on a gelifluction lobe, Jotunheimen, Norway: 14C chronology, stratigraphy, sedimentology and palaeoenvironment. Geogr Ann Ser (Phys Geogr) 86:345–360

    Google Scholar 

  • Matthews JA, Dawson AG, Shakesby, RA (1986b) Lake shoreline development, frost weathering and rock platform erosion in an alpine periglacial environment. Boreas 15: 33-50.

    Google Scholar 

  • Matthews JA, Dahl SO, Berrisford MS, Dresser PQ, Dumayne-Peaty L (1997a) A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. J Quat Sci 12:117–129

    Google Scholar 

  • Matthews JA, Dahl SO, Berrisford MS, Nesje A (1997b) Cyclic development and thermokarstic degradation of palsas in the mid-alpine zone at Leirpullan, Dovrefjell, southern Norway. Permafr Periglac Process 8:107–122

    Google Scholar 

  • Matthews JA, Shakesby RA, Berrisford MS, McEwen LJ (1998) Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafrost Periglac Process 9:147–166

    Google Scholar 

  • Matthews JA, Shakesby RA, McEwen LJ, Berrisford MS, Owen G, Bevan P (1999) Alpine debris flows in Leirdalen, Jotunheimen, Norway, with particular reference to distal fans, intermediate-type deposits and flow types. Arct Antarct Alp Res 31:421–435

    Google Scholar 

  • Matthews JA, Seppälä M, Dresser PQ (2005) Holocene solifluction, climate variation and fire in a subarctic landscape at Pippokangas, Finnish Lapland, based on radiocarbon-dated buried charcoal. J Quat Sci 20:533–548

    Google Scholar 

  • Matthews JA, Dahl SO, Dresser PQ, Berrisford MS, Lie Ø, Nesje A, Owen G (2009) Radiocarbon chronology of Holocene colluvial (debris-flow) events at Sletthamn, Jotunheimen, southern Norway: a window on the changing frequency of extreme climatic events and their landscape impact. Holocene 19:1107–1129

    Google Scholar 

  • Matthews JA, Shakesby RA, Owen G, Vater AE (2011) Pronival rampart formation in relation to snow-avalanche activity and Schmidt-hammer exposure-age dating (SHD): three case studies from southern Norway. Geomorphology 130:280–288

    Google Scholar 

  • Matthews JA, Nesje A, Linge H (2013) Relict talus-foot rock glaciers at Øyberget, upper Ottadalen, southern Norway. Permafrost Periglac Process 24:336–346

    Google Scholar 

  • Matthews JA, Winkler S, Wilson P (2014) Age and origin of ice-cored moraines in Jotunheimen and Breheimen, southern Norway: insights from Schmidt-hammer exposure-age dating. Geogr Ann Ser (Phys Geogr) 96:531–548

    Google Scholar 

  • Matthews JA, McEwen LJ, Owen G (2015) Schmidt-hammer exposure-age dating (SHD) of snow-avalanche impact ramparts in southern Norway: approaches, results and implications for landform age, dynamics and developmemt. Earth Surf Landfs Process 40:1705–1718

    Google Scholar 

  • Matthews JA, Wilson P, Mourne RW (2017a) Landform transitions from pronival ramparts to moraines and rock glaciers: a case study from Smørbotn cirque, Romsdalsalpane, southern Norway. Geogr Ann Ser (Phys Geogr) 99:15–37

    Google Scholar 

  • Matthews JA, Owen G, McEwen LJ, Shakesby RA, Hill JL, Vater AE, Ratcliffe AC (2017b) Snow-avalanche impact craters in southern Norway: their morphology and dynamics compared with small terrestrial meteorite craters. Geomorphology 296:11–30

    Google Scholar 

  • Matthews JA, Winkler S, Wilson P, Tomkins MD, Dortch JM, Mourne RW, Hill JL, Owen G, Vater A (2018) Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. Boreas 47:1144–1169

    Google Scholar 

  • Matthews JA, Wilson P, Winkler S, Mourne RW, Hill JL, Owen G, Hiemstra J, Hallang H, Geary AP (2019) Age and development of active cryoplanation terraces in the alpine permafrost zone at Svartkampan, Jotunheimen, southern Norway. Quat Res 92:641–664

    Google Scholar 

  • Matthews JA, Haselberger S, Hill JL, Owen G, Winkler S, Hiemstra JF, Hallang H (2020a) Snow-avalanche boulder fans in Jotunheimen, southern Norway: Schmidt-hammer exposure-age dating, geomorphometrics, dynamics and evolution. Geogr Ann Ser (Phys Geogr) 102:118–140

    Google Scholar 

  • Matthews JA, McEwen LJ, Owen G, Los SO (2020b) Holocene alluvial fan evolution, Schmidt-hammer exposure-age dating and paraglacial debris floods in the SE Jostedalsbreen region, southern Norway. Boreas 49:886–904

    Google Scholar 

  • Mauri A, Davis BAS, Collins PM, Kaplan JO (2015) The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quat Sci Rev 112:109–127

    Google Scholar 

  • McCarroll D (1990) Differential weathering of feldspar and pyroxene in an arctic-alpine environment. Earth Surf Proc Land 15:641–651

    Google Scholar 

  • McCarroll D, Viles HA (1995) Rock weathering by the lichen Lecidea auriculata in an arctic-alpine environment. Earth Surf Proc Land 20:199–206

    Google Scholar 

  • McCarroll D, Shakesby RA, Matthews JA (1998) Spatial and temporal patterns of late-Holocene rockfall activity on a Norwegian talus slope: a lichenometric and simulation modelling approach. Arct Alp Res 30:51–60

    Google Scholar 

  • McCarroll D, Shakesby RA, Matthews JA (2001) Enhanced rockfall activity during the Little Ice Age: further lichenometric evidence from Norwegian talus. Permafrost Periglac Process 12:157–164

    Google Scholar 

  • McEwen LJ, Matthews JA (1998) Channel form, bed material and sediment sources of the Sprongdøla, southern Norway: evidence for a distinct periglacio-fluvial system. Geogr Ann Ser (Phys Geogr) 80:17–36

    Google Scholar 

  • McEwen LJ, Matthews JA, Shakesby RA, Berrisford MS (2002) Holocene gorge excavation linked to boulder fan formation and frost weathering in a Norwegian alpine periglaciofluvial system. Arct Antarct Alp Res 34:345–357

    Google Scholar 

  • McEwen LJ, Owen G, Matthews JA, Hiemstra JF (2011) Late-Holocene development of a Norwegian alluvial fan affected by proximal glacier variations, distal undercutting and colluvial activity. Geomorphology 127:198–215

    Google Scholar 

  • McEwen LJ, Matthews JA, Owen G (2020) Development of a Holocene glacier-fed composite alluvial fan based on surface exposure-age dating techniques: the Illåe fan, Jotunheimen, Norway. Geomorphology 363: Article No. 107200 (15 p).

    Google Scholar 

  • Mercier D (2008) Paraglacial and paraperiglacial land systems: concepts, temporal scales and spatial distribution. Geomorphol: Relief Process Environ 14:223–233

    Google Scholar 

  • Miesen F, Dahl SO, Schrott L (2021) Evidence of glacier-permafrost interactions associated with hydro-geomorphologicasl processes and landforms at Snøhetta, Dovrefjell, Norway. Geogr Ann Ser (Phys Geogr) 103:273–302

    Google Scholar 

  • Milthers V (1907) Sandslebne stens form og danelse. Meddelelser fra Dansk Geologiske Forening 13:3–60.

    Google Scholar 

  • Moen A (1999) National Atlas of Norway: Vegetation. Norwegian Mapping Authority, Hønefoss.

    Google Scholar 

  • Möller JJ, Sollid JL (1972) Deglaciation chronology of Lofoten-Vesterålen-Ofoten, North Norway. Norske Geografisk Tidsskrift 26:101–133

    Google Scholar 

  • Murton JB (2021) What and where are periglacial landscapes. Permafr Periglac Process 32:186–212

    Article  Google Scholar 

  • Murton JB, Coutard J-P, Lautridou J-P, Ozouf J-C, Robinson DA, Williams RBG (2001) Physical modelling of bedrock brecciation by ice segregation in permafrost. Permafrost Periglac Process 12:255–266

    Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2005) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129

    Google Scholar 

  • Nansen F (1922) The strandflat and isostasy. Videnskapselskapet I Christiania Skrifter, Matematisk-Naturvitenskapelig klasse 2:1–313

    Google Scholar 

  • Nesje A (1993) Neoglacial gelifluction in the Jostedalsbre region, western Norway: evidence from dated buried soils. In: Frenzel B, Matthews JA, Gläser B (eds) Soliflucton and climatic variation in the Holocene. Gustav Fischer Verlag, Stuttgart, pp 37–47

    Google Scholar 

  • Nesje A, Kvamme M (1991) Holocene glacier and climatic variations in western Norway: evidence for early-Holocene demise and multiple Neoglacial events. Geology 19:610–612

    Google Scholar 

  • Nesje A, Willans IM (1994) Erosion of Sognefjord, Norway. Geomorphology 9:33–45

    Google Scholar 

  • Nesje A, Dahl SO, Anda E, Rye N (1988) Blockfields in southern Norway. Significance for the Late Weichselian ice sheets. Nor Geol Tidsskr 68:149–169

    Google Scholar 

  • Nesje A, Kvamme M, Rye N (1989) Neoglacial gelifluction in the Jostedalsbreen region, western Norway: evidence from dated buried palaeopodsols. Earth Surf Proc Land 14:259–270

    Google Scholar 

  • Nesje A, Kvamme M, Rye N, Løvlie R (1991) Holocene glacial and climatic history of the Jostedalsbreen region, western Norway: evidence from lake sediments and terrestrial deposits. Quat Sci Rev 10:87–114

    Google Scholar 

  • Nesje A, Bakke J, Dahl SO, Lie Ø, Bøe AG (2007) A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. Holocene 17:269–277

    Google Scholar 

  • Nesje A, Matthews JA, Linge H, Bredal M, Wilson P, Winkler S (2021) New evidence for active talus-foot rock glaciers at Øyberget, southern Norway, and their development during the Holocene. Holocene 31 (in press)

    Google Scholar 

  • Nicholson DT (2008) Rock control on microweathering of bedrock surfaces in a periglacial environment. Geomorphology 101:655–665

    Google Scholar 

  • Nicholson DT (2009) Holocene microweathering rates and processes on ice-eroded bedrock, Røldal area, Hardangervidda, southern Norway. In Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320. Geological Society, London, Special Publication, pp 29–49

    Google Scholar 

  • Nielsen PR, Dahl SO, Jansen HL, Støren EWN (2016a) Holocene aeolian sedimentation and episodic mass-wasting events recorded in lacustrine sediments on Langøya in Vesterålen, northern Norway. Quat Sci Rev 148:146–162

    Google Scholar 

  • Nielsen PR, Dahl SO, Jansen HL (2016b) Mid- to late-Holocene aeolian activity recorded in a coastal dunefield and lacustrine sediments on Andøya, northern Norway. Holocene 26:1486–1501

    Google Scholar 

  • Niessen A, van Horssen P, Koster EA (1992) Altitudinal zonation of selected geomorphological phenomena in an alpine perglacial area (Abisko, northern Sweden). Geogr Ann Ser (Phys Geogr) 74:1835–2196

    Google Scholar 

  • Nihlén T (2003) Palsas at Härjedalen, Sweden: 1910 and 1998 compared. Geogr Ann Ser (Phys Geogr) 82:39–44

    Google Scholar 

  • Nyberg R (1985) Debris flows and slush avalanches in northern Swedish Lappland: distribution and geomorphological significance. Meddelanden Frå Lunds Universitets Geografiska Institution Avhandlingar 97:1–144

    Google Scholar 

  • Nyberg R (1989) Observations of slushflows and their geomorphological effects in the Swedish mountain area. Geogr Ann Ser (Phys Geogr) 71:185–198

    Google Scholar 

  • Nyberg R (1991) Geomorphic processes at snowpatch sites in the Abisko Mountains, northern Sweden. Zeitschrift für Geomorphologie N.F. 35: 321–343

    Google Scholar 

  • Nyland K, Nelson FE, Figueiredo PM (2020) Cosmogenic 10Be and 36Cl geochronology of cryoplanation terraces in the Alaskan Yukon-Tanana upland. Quat Res 97:157–166

    Google Scholar 

  • Ødegård RS, Sollid JL, Liestøl O (1987) Juvflya – Kvartærgeologi og geomorfologi M 1:10.000. Geografisk Institutt, Universitetet I Oslo, Oslo

    Google Scholar 

  • Ødegård RS, Sollid JL, Liestøl O (1988) Periglacial forms related to terrain parameters in Jotunheimen, southern Norway. In: Senneset K (ed) 5th International Conference on Permafrost, Proceedings, vol 3. Tapir, Trondheim, pp 59–61

    Google Scholar 

  • Ødegård RS, Sollid JL, Liestøl O (1992) Ground temperature measurements in mountain permafrost, Jotunheimen, southern Norway. Permafrost Periglac Process 3:231–234

    Google Scholar 

  • Ødegård RS, Sollid JL (1993) Coastal cliff temperatures related to the potential for cryogenic weathering processes, western Spitsbergen, Svalbard. Polar Res 12:95–106

    Google Scholar 

  • Ojala AEK, Mattila J, Markovaara-Koivisto M, Ruskeeniemi T, Palmu J-P, Sutinen R (2019) Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology 326:190–121

    Google Scholar 

  • Oksanen PO (2005) Development of palsa mires on the northern European continent in relation to Holocene climatic and environmental changes (Academic dissertation). Oulu University Press, Oulu, pp 1–50

    Google Scholar 

  • Oksanen PO (2006) Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas 35:81–95

    Google Scholar 

  • Olesen O, Bering D, Brönner M, Dalsegg E, Fabian K, Fredin O, Gellein J, Husteli B, Magnus C, Rønning JS, Solbakk T, Tønnesen JF, Øverland JA (2012) Tropical weathering in Norway. Norwegian Geological Survey Report 2012.005, 188 p

    Google Scholar 

  • Olesen O, Kierulf HP, Brönner M, Dalsegg E, Fredin O, Solbakk T (2013) Deep weathering, neotectonics and strandflat formation in Nordland, northern Norway. Norw J Geol 93:189–213

    Google Scholar 

  • Olvmo M, Holmer B, Thorsson S, Reese H, Lindberg F (2020) Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Scientific Reports Article No. 10: 8937 (10 p). https://doi.org/10.1038/s41598-020-65719-1

  • Oppikofer T, Saintot A, Hermanns RL, Böhme M, Scheiber T, Gosse J, Dreiås GM (2017) From incipient slope instability through slope deformation to catastrophic failure—different stages of failure development on the Ivasnasen and Vollan rock slopes (western Norway). Geomorphology 289:96–116

    Google Scholar 

  • Østrem G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr Ann 41:228–230

    Google Scholar 

  • Østrem G (1964) Ice-cored moraines in Scandinavia. Geogr Ann 46:282–337

    Google Scholar 

  • Østrem G (1965) Problems of dating ice-cored moraines. Geogr Ann 47:1–38

    Google Scholar 

  • Østrem G (1971) Rock glaciers and ice-cored moraines: a reply to D. Barsch. Geogr Ann Ser (Phys Geogr) 53:207–213

    Google Scholar 

  • Ouellet M-A, Germain D (2014) Hyperconcentrated flows on a forested alluvial fan of eastern Canada: geomorphic characteristics, return period and triggering scenarios. Earth Surf Proc Land 39:1876–1887

    Google Scholar 

  • Owen G, Matthews JA, Shakesby RA, He X (2006a) Snow-avalanche impact landforms, deposits and effects at Urdvatnet, southern Norway: implications for avalanche style and process. Geogr Ann Ser (Phys Geogr) 88:295–307

    Google Scholar 

  • Owen G, Matthews JA, Shakesby RA (2006b) Holocene chemical weathering on a calcitic lake shoreline in an alpine periglacial environment: Attgløyma, Sognefjell, southern Norway. Permafr Periglac Process 17:3–12

    Google Scholar 

  • Owen G, Matthews JA, Albert PG (2007) Rates of Holocene chemical weathering, ‘Little Ice Age’ glacial erosion, and implications for Schmidt-hammer dating at a glacier-foreland boundary, Fåbergstølsbreen, southern Norway. Holocene 17:829–834

    Google Scholar 

  • Paasche Ø, Strømsøe JR, Dahl SO, Linge H (2006) Weathering characteristics of arctic islands in northern Norway. Geomorphology 82:430–452

    Google Scholar 

  • Paasche Ø, Dahl SO, Løvlie R, Bakke J, Nesje A (2007) Rockglacier activity during the Last Glacial-Interglacial transition and Holocene spring snowmelting. Quat Sci Rev 26:793–807

    Google Scholar 

  • Pierson TC (2005) Hyperconcentrated flow—transitional process between water flow and debris flow. In: Jakob M, Hungr O (eds) Debris flows/avalanches. Geological Society of America, Boulder CO, pp 1–12

    Google Scholar 

  • Pissart A (2002) Palsas, lithalsas and remnants of these periglacial mounds. A progress report. Prog Phys Geogr 26:605–621

    Google Scholar 

  • Pissart A (2013) Palsas and lithalsas. In: Giardino JR, Harbor JM (eds) Treatise on geomorphology, volume 8, glacial and periglacial geomorphology. Academic Press, San Diego CA, pp 223–237

    Google Scholar 

  • Porter SC (1989) Some geological implications of average Quaternary glacial conditions. Quat Res 32:245–261

    Google Scholar 

  • Priesnitz K (1988) Cryoplanation. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 49–67

    Google Scholar 

  • Rapp A (1957) Studien über schutthalden in Lappland und auf Spitzbergen. Zeitschrift für Geomorphologie NF 1:179–200

    Google Scholar 

  • Rapp A (1959) Avalanche boulder tongues in Lappland. Geogr Ann 41:34–48

    Google Scholar 

  • Rapp A (1960) Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geogr Ann 42:65–200

    Google Scholar 

  • Rapp A (1982) Zonation of permafrost indicators in Swedish Lappland. Geogr Tidsskr/Dan J Geogr 82:37–38

    Google Scholar 

  • Rapp A (1984) Nivation hollows and glacial cirques in Söderåsen, Scania, south Sweden. Geogr Ann Ser (Phys Geogr) 66:11–28

    Google Scholar 

  • Rapp A, Åkerman HJ (1993) Slope processes and climate in the Abisko Mountains, northern Sweden. In: Frenzel B, Matthews JA, Gläser B (eds) Soliflucton and climatic variation in the Holocene. Gustav Fischer Verlag, Stuttgart, pp 163–177

    Google Scholar 

  • Rapp A, Clark M (1971) Large nonsorted polygons in Padjelanta National Park, Swedish Lappland. Geogr Ann Ser (Phys Geogr) 53:71–85

    Google Scholar 

  • Rapp A, Nyberg R (1988) Mass movements, nivation processes and climatic fluctuations in northern Scandinavian mountains. Nor Geogr Tidsskr/Nor J Geogr 42:245–253

    Google Scholar 

  • Rasmussen A (1981) The deglaciation of the coastal area NW of Svartisen, Northern Norway. Nor Geol Unders 369:1–31

    Google Scholar 

  • Rea BR, Whalley WB, Rainey MM, Gordon JE (1996) Blockfields old or new? Evidence and implications for some plateaus in northern Norway. Geomorphology 15:109–121

    Google Scholar 

  • Reid JR, Nesje A (1988) A giant ploughing block, Finse, southern Norway. Geogr Ann Ser (Phys Geogr) 70:27–33

    Google Scholar 

  • Reusch H (1894) Strandfladen, et nyt træk i Norges geografi. Norges Geologiske Undersøgelse 14:1–14

    Google Scholar 

  • Ridefelt H, Boelhouwers J (2006) Observations on regional variation in solifluction landform morphology and environment in the Abisko region, northern Sweden. Permafrost Periglac Process 17:253–266

    Google Scholar 

  • Ridefelt H, Åkerman J, Beylich A, Boelhouwers J, Kolstrup E, Nyberg R (2009) 56 years of solifluction measurements in the Abisko mountains, northern Sweden—analysis of temporal and spatial variations of slow soil surface movements. Geogr Ann Ser (Phys Geogr) 91: 215–232

    Google Scholar 

  • Rikkinen J (1989) Relations between topography, microclimates and vegetation in the Kalmari-Saarijarvi esker chain, central Finland. Fennia 167:87–150

    Google Scholar 

  • Rönkkö M, Seppälä M (2003) Surface characteristics affecting active layer formation in palsas, Finnish Lapland. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost: Proceedings of the Eighth International Conference on Permafrost. Swets and Zeitlinger, Lisse, pp 995–1000

    Google Scholar 

  • Rubensdotter l, Sletten K, Sandøy G (2021) Morphological description of erosional and depositional landfoms formed by debris flow processes in mainland Norway. In Beylich AA (ed) Landscapes and landforms of Norway. Berlin: Springer, pp 225–240

    Google Scholar 

  • Rudberg S (1977) Periglacial zonation in Scandinavia. Abhandlungen der Akademie der Wissenschaften in Göttingen Mathematisch-Physikalische Klasse 31:92–104

    Google Scholar 

  • Samuelsson C (1926) Studien über die Wirkungen des Windes in den kalten und gemässigten Erdteilen. Bull Geol Inst Univ Upps 20:57–230

    Google Scholar 

  • Sannel ABK (2020) Ground temperature and snow depth variability within a subarctic peat plateau landscape. Permafrost Periglac Process 31:255–263

    Google Scholar 

  • Sannel ABK, Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake complexes. J Geophys Res 116:GO3035

    Google Scholar 

  • Sannel ABK, Hugelius G, Jansson P, Kuhry P (2016) Permafrost warming in a subarctic peatland—which meteorological controls are most important? Permafr Periglac Process 27:177–188

    Google Scholar 

  • Sandersen F (1997) The influence of meteorological factors on the initiation of debris flows in Norway. In Matthews JA, Brunsden D, Frenzel B, Gläser B, Weiß (eds) Rapid mass movement as a source of climatic evidence for the Holocene. Gustav Fischer Verlag: Stuttgart, pp 321–332

    Google Scholar 

  • Sandvold S, Lie Ø, Nesje A, Dahl SO (2001) Holocene glacial and colluvial activity in Leirungsdalen, eastern Jotunheimen, south-central Norway. Norw J Geol 81:25–40

    Google Scholar 

  • Scapozza C, Lambiel C, Baron L, Marescot L, Reynard E (2011) Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps. Geomorphology 132:208–221

    Google Scholar 

  • Scarpozza C (2016) Evidence of paraglacial and paraperiglacial crisis in Alpine sediment transfer since the last glaciation (Tincino, Switzerland). Quaternaire 27:139–155

    Google Scholar 

  • Schleier M, Hermanns RL, Gosse JC, Oppikofer T, Rohn J, Tønnesen AF (2017) Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway. Geomorphology 289:117–133

    Google Scholar 

  • Schlyter P (1995) Ventifacts as palaeo-wind indicators in southern Scandinavia. Permafrost Periglac Process 6:207–219

    Google Scholar 

  • Schunke E, Zoltai SC (1988) Earth hummocks (thufur). In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 231–245

    Google Scholar 

  • Sellier D, Kerguillec R (2021) Characterization of scree slopes in the Rondane mountains (south-central Norway). In Beylich AA (ed) Landscapes and landforms of Norway. Springer Nature, Cham, pp 203–223

    Google Scholar 

  • Seppälä M (1971) Evolution of eolian relief of the Kaamasjoki—Kiellajoki river basin in Finnish Lapland. Fennia 104:1–88

    Google Scholar 

  • Seppälä M (1972) Location, morphology and orientation of inland dunes in northern Sweden. Geogr Ann Ser (Phys Geogr) 54:85–104

    Google Scholar 

  • Seppälä M (1981) Forest fires as activator of geomorphic processes in Kuttanen esker-dune region, northernmost Finland. Fennia 159:221–228

    Google Scholar 

  • Seppälä M (1982) Present day periglacial phenomena in northern Finland. Biul Peryglac 29:231–243

    Google Scholar 

  • Seppälä M (1986) The origin of palsas. Geogr Ann Ser (Phys Geogr) 68:141–147

    Google Scholar 

  • Seppälä M (1988) Palsas and related forms. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 247–278

    Google Scholar 

  • Seppälä M (1994) Snow depth controls palsa growth. Permafrost Periglac Process 5:283–299

    Google Scholar 

  • Seppälä M (1995a) Deflation and redeposition of sand dunes in Finnish Lapland. Quat Sci Rev 14:799–809

    Google Scholar 

  • Seppälä M (1995b) How to make a palsa: a field experiment on formation of permafrost. Z Geomorphol Suppl 99:91–96

    Google Scholar 

  • Seppälä M (1997) Distribution of permafrost in Finland. Bull Geol Soc Finl 69:87–96

    Google Scholar 

  • Seppälä M (2003) Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52:141–148

    Google Scholar 

  • Seppälä M (2004) Wind as a geomorphic agent in cold climates. Cambridge University Press, Cambridge

    Google Scholar 

  • Seppälä M (2005a) Periglacial environment. In: Seppälä M (ed) The physical geography of Fennoscandia. Wiley-Blackwell, Chichester, pp 349–364

    Google Scholar 

  • Seppälä M (2005b) Dating of palsas. In Ojala AEK (ed) Quaternary studies in the northern and Arctic regions of Finland. Geological Survey of Finland Special Paper 40, pp 79–84

    Google Scholar 

  • Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat Res 75:366–370

    Google Scholar 

  • Sernander R (1905) Flytjord I svenska fjälltrakter. En botanisk-geologisk undersökning. Geol Föreningen I Stock Förhandlingar 27:41–84

    Google Scholar 

  • Shakesby RA (1997) Pronival (protalus) ramparts: a review of forms, processes, diagnostic criteria and palaeoenvironmental implications. Prog Phys Geogr 21:394–418

    Google Scholar 

  • Shakesby RA, Matthews JA (1987) Frost weathering and rock platform erosion on periglacial shorelines: a test of a hypothesis. Nor Geol Tidsskr 67:203

    Google Scholar 

  • Shakesby RA, Dawson AG, Matthews JA (1987) Rock glaciers, protalus ramparts and related phenomena, Rondane, Norway: a continuum of large-scale talus-derived landforms. Boreas 16:305–317

    Google Scholar 

  • Shakesby RA, Matthews JA, McCarroll D (1995) Pronival (“protalus”) ramparts in the Romsdalsalpane, southern Norway: forms, terms, subnival processes, and alternative mechanisms of formation. Arct Alp Res 27:271–282

    Google Scholar 

  • Shakesby RA, Matthews JA, McEwen LJ, Berrisford MS (1999) Snow-push processes in pronival (protalus) rampart formation: geomorphological evidence from Smørbotn, Romsdalsalpane, southern Norway. Geogr Ann Ser (Phys Geogr) 81:31–45

    Google Scholar 

  • Slaymaker O (1988) The distinctive attributes of debris torrents. Hydrol Sci J 33:567–573

    Google Scholar 

  • Slaymaker O (1995) Introduction. In: Slaymaker O (ed) Steepland geomorphology. Wiley, Chichester, pp 1–6

    Google Scholar 

  • Slaymaker O (2009) Proglacial, periglacial or paraglacial? In Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320. Geological Society, London, Special Publication, pp 71–84

    Google Scholar 

  • Sletten K, Blikra LH (2007) Holocene colluvial (debris-flow and water-flow) processes in eastern Norway: stratigraphy, chronology and palaeoenvironmental implications. J Quat Sci 22:619–635

    Google Scholar 

  • Sletten K, Blikra LH, Ballantyne CK, Nesje A, Dahl SO (2003) Holocene debris flows recognized in a lacustrine sedimentary succession: sedimentology, chronostratigraphy and cause of triggering. Holocene 13:907–920

    Google Scholar 

  • Sollid JL, Sørbel L (1992) Rock glaciers in Svalbard and Norway. Permafrost Periglac Process 3:215–222

    Google Scholar 

  • Sollid JL, Sørbel L (1994) Distribution of glacial landforms in southern Norway in relation to the thermal regime of the last continental ice sheet. Geogr Ann Ser (Phys Geogr) 76:25–35

    Google Scholar 

  • Sollid JL, Sørbel L (1998) Palsa bogs as a climatic indicator—examples ffom Dovrefjell, southern Norway. Ambio 27:287–291

    Google Scholar 

  • Sollid JL, Andersen S, Hamre N, Kjeldsen O, Salvigsen O, Sturød S, Tveitå T, Wilhelmsen A (1973) Deglaciation of Finnmark, North Norway. Nor Geogr Tidsskr 27:233–325

    Google Scholar 

  • Sollid JL, Holmlund P, Isaksen K, Harris C (2000) Deep permafrost boreholes in western Svalbard, northern Sweden and southern Norway. Nor Geogr Tidsskr 54:186–191

    Google Scholar 

  • Sørensen T (1935) Bodenformen und Pflanzendecke in Nordostgrönland. Meddelelser om Gronland 93(4):1–69

    Google Scholar 

  • Steiger C, Etzelmüller B, Westermann S, Myyhra KS (2016) Modelling the permafrost distribution in steep rockwalls in Norway. Norw J Geol 96:329–341

    Google Scholar 

  • Stevens T, Sechl D, Tziavaras C, Schneider R, Banak A, Andreucci S, Hattestrand M, Pascucci V (2022) Age, formation and significance of loess deosits in central Sweden. Earth Surf Process Landf. https://doi.org/10.1002/esp.5456

  • Støren EN, Dahl SO, Lie Ø (2008) Separation of late-Holocene episodic paraglacial events and glacier fluctuations in eastern Jotunheimen, central southern Norway. Holocene 18:1179–1191

    Google Scholar 

  • Støren EN, Dahl SO, Nesje A, Paasche Ø (2010) Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: development and application of a new method. Quat Sci Rev 29:3021–3033

    Google Scholar 

  • Støren EN, Kolstad EW, Paasche Ø (2014) Linking past flood frequencies in Norway to regional atmospheric circulation anomalies. J Quat Sci 27:71–80

    Google Scholar 

  • Strand SM, Christiansen HH, Johansson M, Åkerman J, Humlum O (2020) Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafrost Periglac Process 32:47–58

    Google Scholar 

  • Strøeven AP, Fabel D, Hättestrand C, Harbor J (2002) A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44:145–154

    Google Scholar 

  • Strøeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredin O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, Caffee MW, Fink D, Lundqvist J, Rosqvist GC, Strömberg B, Jansson KN (2016) Deglaciation of Fennoscandia. Quat Sci Rev 147:91–121

    Google Scholar 

  • Strømsøe JR, Paasche Ø (2011) Weathering patterns in high-latitude regolith. J Geophys Res 116:F03021. https://doi.org/10.1029/2010JF001954

  • Sutinen R, Hyvönen E, Kukkonen I (2014) LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. Int J Appl Earth Obs Geoinf 27:91–99

    Google Scholar 

  • Svenonius FV (1909) Om scärf-eller blockhafven på våra högfjäll. Geol Föreningen I Stock Förhandlingar 32:169–181

    Google Scholar 

  • Svensson H (1964) Tundra polygons. Photographic interpretation and field studies in North-Norwegian polygon areas. Norges Geologisk Undersøkelse Bulletin 223:298–327

    Google Scholar 

  • Svensson H (1969) Open fissures in a polygonal net on the Norwegian Arctic coast. Biul Peryglac 19:389–398

    Google Scholar 

  • Svensson H (1974) Distribution and chronology of relict polygon patterns on the Laholm Plain, the Swedish west coast. Geogr Ann Ser (Phys Geogr) 54:159–175

    Google Scholar 

  • Svensson H (1983) Ventifacts as palaeowind indicators in a former periglacial area of southern Scandinavia. Proceedings of the Fourth International Conference on Permafrost, Fairbanks, Alaska, 18–22 July 1983, pp 1217–1220

    Google Scholar 

  • Svensson H (1988) Ice-wedge casts and relict polygonal patterns in Scandinavia. J Quat Sci 3:57–68

    Google Scholar 

  • Sverdrup HU (1938) Notes on erosion by drifting snow and transport of solid material by sea ice. Am J Sci 235:370–373

    Google Scholar 

  • Thorn CE (1988) Nivation: a geomorphic chimera. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 3–31

    Google Scholar 

  • Thorn CE, Hall K (2002) Nivation and cryoplanation: the case for scrutiny and integration. Prog Phys Geogr 26:533–550

    Google Scholar 

  • Thorn CE, Darmody RG, Campbell SW, Allen CE, Dixon JC (2007) Microvariability in the early stages of cobble weathering by microenvironment on a glacier foreland, Storbreen, Jotunheimen, Norway. Earth Surf Proc Land 32:2199–2211

    Google Scholar 

  • Thorn CE, Darmody RG, Dixon JC (2011) Rethinking weathering and pedogenesis in alpine periglacial regions: some Scandinavian evidence. In Martini IP, French HM, Pérez Albert A (eds) Ice-marginal and periglacial processes and sediments, vol 354. Geological Society, London, Special Publication, pp 183–193

    Google Scholar 

  • Tikkanen M (2005) Climate. In: Seppälä M (ed) The physical geography of Fennoscandia. Wiley-Blackwell, Chichester, pp 97–112

    Google Scholar 

  • Tikkanen M, Heikkila R (1991) The influence of clear felling on temperature and vegetation in an esker area at Lammi, southern Finland. Fennia 169:1–24

    Google Scholar 

  • Ulfstedt AC (1993) Solifluction in the Swedish mountains: distribution in relation to vegetation and snow cover. In: Frenzel B, Matthews JA, Gläser B (eds) Soliflucton and climatic variation in the Holocene. Gustav Fischer Verlag, Stuttgart, pp 217–223

    Google Scholar 

  • Van Vliet-Lanoë B, Seppälä M (2002) Stratigraphy, age and formation of peaty earth hummocks (pounus), Finnish Lapland. Holocene 12:187–199

    Google Scholar 

  • Van Vliet LB, Seppälä M, Käyhkö J (1993) Dune dynamics and cryoturbation features controlled by Holocene water level changes, Hietatievat, Finnish Lapland. Geol Mijnbouw 72:211–224

    Google Scholar 

  • Vere DM, Matthews JA (1985) Rock glacier formation from a lateral moraine at Bukkeholsbreen, Jotunheimen, Norway: a sedimentological approach. Zeitschrift für Geomorphologie NF 28:397–415

    Google Scholar 

  • Vasskog K, Nesje A, Støren EN, Waldmann N, Chapron E, Ariztegui D (2011) A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence at Oldevatnet, western Norway. Holocene 21:597–614

    Google Scholar 

  • Vogt T (1918) Om recente og gamle strandlinjer I fast fjell. Norsk Geologiske Tidsskrift 4:107–127

    Google Scholar 

  • Vorren KD (1979) Recent palsa datings, a brief survey. Nor Geogr Tidsskr 33:217–219

    Google Scholar 

  • Vorren KD, Vorren B (1975) The problem of dating a palsa, Two attempts involving pollen diagrams, determination of moss subfossils, and C14-datings. Astarte 8:73–81

    Google Scholar 

  • Vorren TO, Mangerud J, Blikra LH, Nesje A, Sveian H (2006) Landet trer fram. In: Ramberg IB, Bryhni I, Nøttvedt A (eds) (2006) Landet blir til: Norges geologi (Chapter 16, 532–555). Norsk Geologisk Forening (NGF): Trondheim. 608 pp

    Google Scholar 

  • Walker MJC, Head MJ, Berkelhammer M, Björck S, Cheng H, Cwynar L, Fisher D, Gkinis V, Long A, Lowe JJ, Newnham RJ, Rasmussen SO, Weiss H (2018) Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes 41:213–223

    Google Scholar 

  • Washburn AL (1979) Geocryology: a survey of periglacial processes and environments. Arnold, London

    Google Scholar 

  • Wilford DJ, Sakals ME, Innes JL, Sidle RC, Bergerud WA (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1:61–66

    Google Scholar 

  • Williams PJ (1957) Some investigations into solifluction features in Norway. Geogr J 23:42–58

    Google Scholar 

  • Williams PJ (1961) Climatic factors controlling the distribution of certain frozen ground phenomena. Geogr Ann 43:339–347

    Google Scholar 

  • Wilson P, Matthews JA, Mourne RW (2017) Relict blockstreams at Insteheia, Valldalen-Tafjorden, southern Norway: their nature and Schmidt-hammer exposure age. Permafrost Periglac Process 28:286–297

    Google Scholar 

  • Wilson P, Linge H, Matthews JA, Mourne RW, Olsen J (2019) Comparative numerical surface exposure-age dating (10Be and Schmidt hammer) of an early-Holocene rock avalanche at Alstadfjellet, Valldalen, southern Norway. Geogr Ann Ser (Phys Geogr) 101:293–309

    Google Scholar 

  • Wilson P, Matthews JA, Mourne RW, Linge H, Olsen J (2020) Interpretation, age and significance of a relict paraglacial and periglacial boulder-dominated landform assemblage in Alnesdalen, Romsdalsalpane, southern Norway. Geomorphology 369: Article No. 107362 (16 p).

    Google Scholar 

  • Winkler S, Matthews JA, Mourne RW, Wilson P (2016) Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretive problems. Geogr Ann Ser (Phys Geogr) 98:265–285

    Google Scholar 

  • Winkler S, Matthews JA, Haselberger S, Hill JL, Mourne RW, Owen G, Wilson P (2020) Schmidt-hammer exposure-age dating (SHD) of sorted stripes on Juvflye, Jotunheimen (central southern Norway): morphodynamic and palaeoclimatic implications. Geomorphology 353: Article No. 107014 (19 p).

    Google Scholar 

  • Winkler S, Donner A, Tintrup gen Suntrup A (2021) Periglacial landforms in Jotunheimen, central southern Norway, and their altitudinal distribution. In Beylich AA (ed) Landscapes and landforms of Norway. Berlin: Springer, pp 169-202

    Google Scholar 

  • Worsley P (2008) Some observations on lake ice-push features, Grasvatn, northern Scandinavia. Nor Geogr Tidsskr 29:10–19

    Google Scholar 

  • Worsley P, Harris C (1974) Evidence for Neoglacial solifluction at Okstindan, north Norway. Arctic 27:128–144

    Google Scholar 

  • Zuidhoff FZ, Kolstrup E (2000) Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr Periglac Process 11:55–69

    Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to Matti Seppälä, who sadly died on 24 November 2020; in appreciation of his immense contribution to periglacial geomorphology in Finland and internationally.

Several colleagues contributed photographs, including Jennifer Hill, Jan Hjort, Richard Mourne, Mons Rustøy, Olli Ruth, Peter Wilson and Stefan Winkler. Pål Ringkjøb Nielsen supplied the data for plotting Fig. 5l. We are also grateful to Ola Fredin, Charles Harris, Miska Luoto, Richard Shakesby, Peter Wilson and Stefan Winkler for reviewing and commenting on the manuscript, and to Anna Ratcliffe who prepared the figures for publication. This paper represents Jotunheimen Research Expeditions, Contribution No. 225 (see http://jotunheimenresearch.wixsite.com/home).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matthews, J.A., Nesje, A. (2022). Scandinavia. In: Oliva, M., Nývlt, D., Fernández-Fernández, J.M. (eds) Periglacial Landscapes of Europe. Springer, Cham. https://doi.org/10.1007/978-3-031-14895-8_14

Download citation

Publish with us

Policies and ethics