Skip to main content

Drawing Music: Using Neural Networks to Compose Descriptive Music from Illustrations

  • Conference paper
  • First Online:
New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence (DiTTEt 2022)

Abstract

The creative capacity of machines is still questioned by researchers and users alike. For this reason, computational creativity does not only focus on the development of machines for the creation of artistic content but also on the evaluation of the generated content. This works presents a system that composes polyphonic music from the drawings of a user in real time. Our proposal provides an analysis of the Fantasia film, produced in 1940 by Walt Disney and deduces the relationship between its audio and images. As part of system development, an LSTM-based Recurrent Neural Network was trained with MIDI music files and a model was obtained. As a result, the proposed system generates polyphonic music with expressive timing and dynamics by inferring chords from the user’s drawings. To assess the creative ability of the machine a Turing test was conducted and the quality of the interconnection between drawings and music was measured by another user test. Additionally, the performance of the considered classifiers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Ben-Tal, O., Berger, J., Cook, B., Daniels, M., Scavone, G.: Sonart: the sonification application research toolbox. Georgia Institute of Technology (2002)

    Google Scholar 

  4. Clague, M.: Playing in’toon: walt disney’s “Fantasia’’(1940) and the imagineering of classical music. Am. Music. 22(1), 91–109 (2004)

    Article  Google Scholar 

  5. Conklin, D.: Music generation from statistical models. In: Proceedings of the AISB 2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pp. 30–35. Citeseer (2003)

    Google Scholar 

  6. Dhakar, L.: Color thief. http://lokeshdhakar.com/projects/color-thief/ (2011). Accessed: 02 May 2018

  7. Driedger, J., Müller, M., Disch, S.: Extending harmonic-percussive separation of audio signals. In: ISMIR, pp. 611–616 (2014)

    Google Scholar 

  8. Fitzgerald, D.: Harmonic/percussive separation using median filtering (2010)

    Google Scholar 

  9. Google: magenta - make music and art using machine learning.https://magenta.tensorflow.org/ (2015). Accessed 21 Feb 2018

  10. Hassan, M., Bhagvati, C.: Evaluation of image quality assessment metrics: color quantization noise. Evaluation 9(1) (2015)

    Google Scholar 

  11. Ibraheem, N.A., Hasan, M.M., Khan, R.Z., Mishra, P.K.: Understanding color models: a review. ARPN J. Sci. Technol. 2(3), 265–275 (2012)

    Google Scholar 

  12. Korzeniowski, F., Widmer, G.: Feature learning for chord recognition: the deep chroma extractor. arXiv preprint arXiv:1612.05065 (2016)

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  14. Lu, G., Phillips, J.: Using perceptually weighted histograms for colour-based image retrieval. In: Signal Processing Proceedings, 1998. ICSP 1998. 1998 Fourth International Conference on, vol. 2, pp. 1150–1153. IEEE (1998)

    Google Scholar 

  15. Maher, M.L.: Computational and collective creativity: who’s being creative? In: ICCC, pp. 67–71. Citeseer (2012)

    Google Scholar 

  16. Mann, Y.: A. I. Duet - A piano that responds to you. https://github.com/googlecreativelab/aiexperiments-ai-duet (2017). Accessed 19 Feb 2018

  17. Martin, C.P., Torresen, J.: Robojam: a musical mixture density network for collaborative touchscreen interaction. arXiv preprint arXiv:1711.10746 (2017)

  18. McCormack, J.: Grammar based music composition. Complex Syst. 96, 321–336 (1996)

    Google Scholar 

  19. Müller, M., Ewert, S.: Chroma toolbox: matlab implementations for extracting variants of chroma-based audio features. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR), 2011. hal-00727791, version 2–22 Oct 2012. Citeseer (2011)

    Google Scholar 

  20. Müller, M., Kurth, F., Clausen, M.: Audio matching via chroma-based statistical features. In: ISMIR, vol. 2005, p. 6th (2005)

    Google Scholar 

  21. Navarro-Cáceres, M., Bajo, J., Corchado, J.M.: Applying social computing to generate sound clouds. Eng. Appl. Artif. Intell. 57, 171–183 (2017)

    Article  Google Scholar 

  22. Roberts, A., et al.: Interactive musical improvisation with magenta. In: Proceedings Neural Information Processing Systems (2016)

    Google Scholar 

  23. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to SIFT or SURF. In: Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  24. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  25. Sanz, J.C.: Lenguaje del color: (sinestesia cromática en poesía y arte visual). El autor (1981)

    Google Scholar 

  26. Simon, I., Sageev, O.: Performance rnn: generating music with expressive timing and dynamics. https://magenta.tensorflow.org/performance-rnn (2017). Accessed 19 Feb 2018

  27. Smith, K.: Kenzie smith piano - anime covers for piano. https://kenziesmithpiano.com/anime-midi/ (2018). Accessed 27 Jan 2018

  28. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  29. Unemi, T., Matsui, Y., Bisig, D.: Identity SA 1.6: an artistic software that produces a deformed audiovisual reflection based on a visually interactive swarm. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, pp. 297–300. ACM (2008)

    Google Scholar 

  30. Waite, E., Eck, D., Roberts, A., Abolafia, D.: Generating long-term structure in songs and stories. https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn (2016). Accessed 19 Feb 2018

  31. Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, pp. 197–206. ACM (2007)

    Google Scholar 

  32. Yang, L.C., Chou, S.Y., Yang, Y.H.: Midinet: a convolutional generative adversarial network for symbolic-domain music generation. In: Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR 2017), Suzhou, China (2017)

    Google Scholar 

  33. Yang, N.C., Chang, W.H., Kuo, C.M., Li, T.H.: A fast mpeg-7 dominant color extraction with new similarity measure for image retrieval. J. Vis. Commun. Image Represent. 19(2), 92–105 (2008)

    Article  Google Scholar 

  34. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Martín-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martín-Gómez, L., Pérez-Marcos, J., Rivero, A.J.L., Bermúdez, G.M.T. (2023). Drawing Music: Using Neural Networks to Compose Descriptive Music from Illustrations. In: de la Iglesia, D.H., de Paz Santana, J.F., López Rivero, A.J. (eds) New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence. DiTTEt 2022. Advances in Intelligent Systems and Computing, vol 1430. Springer, Cham. https://doi.org/10.1007/978-3-031-14859-0_3

Download citation

Publish with us

Policies and ethics