Skip to main content

Surgical Anatomy of the Basal Ganglia and Thalamus

  • Chapter
  • First Online:
Brain Anatomy and Neurosurgical Approaches

Abstract

Over the last four decades, deep brain stimulation (DBS) has emerged as the most effective and safe surgical intervention for disorders involving the basal ganglia, specifically Parkinson’s disease (PD), essential tremor, dystonia, and obsessive–compulsive disorder. Many randomized clinical studies have shown an effective suppression of PD motor symptoms when stimulating subthalamic nucleus or globus pallidus internus, tremor when stimulating ventral intermediate nucleus of the thalamus and tics, and compulsive symptoms when stimulating the accumbens and the ventral limb of the internal capsule. However, incomplete understanding of the basal ganglia and thalamic neuroanatomy and the therapeutic mechanisms of DBS impede the personalization of this therapy and may contribute to suboptimal outcomes. This chapter aims to elucidate the microsurgical anatomy of these basal ganglia and thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obeso JA, Olanow CW, Rodriguez-Oroz MC, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–63.

    Article  CAS  PubMed  Google Scholar 

  2. Okun MS, Fernandez HH, Wu SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65:586–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  4. Wichmann T, Delong MR. Deep-brain stimulation for basal ganglia disorders. Basal Ganglia. 2011;1:65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  5. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.

    Article  CAS  PubMed  Google Scholar 

  6. Keuken MC, Uylings HB, Geyer S, et al. Are there three subdivisions in the primate subthalamic nucleus? Front Neuroanat. 2012;6:14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alkemade A, Forstmann BU. Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? NeuroImage. 2014;95:326–9.

    Article  PubMed  Google Scholar 

  8. Combs HL, Folley BS, Berry DT, et al. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol Rev. 2015;25:439–54.

    Article  PubMed  Google Scholar 

  9. Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.

    Article  CAS  PubMed  Google Scholar 

  10. Williams NR, Foote KD, Okun MS. STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Mov Disord Clin Pract. 2014;1:24–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in movement disorders. Neuroscience. 2011;198:232–44.

    Article  CAS  PubMed  Google Scholar 

  12. Middlebrooks EH, Tuna IS, Almeida L, et al. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. Neuroimage Clin. 2018;20:1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wong JK, Hess CW, Almeida L, et al. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother. 2020;20:319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oyama G, Foote KD, Hwynn N, et al. Rescue leads: a salvage technique for selected patients with a suboptimal response to standard DBS therapy. Parkinsonism Relat Disord. 2011;17:451–5.

    Article  PubMed  Google Scholar 

  15. Malone DA Jr, Dougherty DD, Rezai AR, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  PubMed  Google Scholar 

  16. Yagmurlu K, Rhoton AL Jr, Tanriover N, et al. Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem. Neurosurgery. 2014;10(Suppl 4):602–19; discussion 619–620.

    PubMed  Google Scholar 

  17. Fridley J, Adams G, Sun P, et al. Effect of subthalamic nucleus or globus pallidus interna stimulation on oculomotor function in patients with Parkinson’s disease. Stereotact Funct Neurosurg. 2013;91:113–21.

    Article  PubMed  Google Scholar 

  18. Yagmurlu K, Vlasak AL, Rhoton AL Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery. 2015;11(Suppl 2):274–305; discussion 305.

    PubMed  Google Scholar 

  19. Gallay MN, Jeanmonod D, Liu J, et al. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 2008;212:443–63.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang AI, Buch VP, Heman-Ackah SM, et al. Thalamic deep brain stimulation for essential tremor: relation of the dentatorubrothalamic tract with stimulation parameters. World Neurosurg. 2020;137:e89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jbabdi S, Lehman JF, Haber SN, et al. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci. 2013;33:3190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baydin S, Yagmurlu K, Tanriover N, et al. Microsurgical and fiber tract anatomy of the nucleus accumbens. Oper Neurosurg. 2016;12:269–88.

    Article  Google Scholar 

  23. Fudge JL, Haber SN. Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci. 2002;22:10078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holanda VM, Okun MS, Middlebrooks EH, et al. Postmortem dissections of common targets for lesion and deep brain stimulation surgeries. Neurosurgery. 2020;86(6):860–72.

    Article  PubMed  Google Scholar 

  25. Rabie A, Verhagen Metman L, Slavin KV. Using “functional” target coordinates of the subthalamic nucleus to assess the indirect and direct methods of the preoperative planning: do the anatomical and functional targets coincide? Brain Sci. 2016;6:65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sudhyadhom A, Haq IU, Foote KD, et al. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52.

    Article  PubMed  Google Scholar 

  27. Alho A, Hamani C, Alho EJL, et al. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation. Brain Struct Funct. 2017;222:2547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sajonz BE, Amtage F, Reinacher PC, et al. Deep brain stimulation for tremor tractographic versus traditional (DISTINCT): study protocol of a randomized controlled feasibility trial. JMIR Res Protoc. 2016;5:e244.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim W, Sharim J, Tenn S, et al. Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: case report. J Neurosurg. 2018;128:215–21.

    Article  PubMed  Google Scholar 

  30. Pouratian N, Zheng Z, Bari AA, et al. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115:995–1004.

    Article  PubMed  Google Scholar 

  31. Tsolaki E, Downes A, Speier W, et al. The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor. Neuroimage Clin. 2018;17:1019–27.

    Article  PubMed  Google Scholar 

  32. Akram H, Dayal V, Mahlknecht P, et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin. 2018;18:130–42.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Al-Fatly B, Ewert S, Kubler D, et al. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain. 2019;142:3086–98.

    Article  PubMed  Google Scholar 

  34. Calabrese E, Hickey P, Hulette C, et al. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp. 2015;36:3167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parent A, Hazrati L-N. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev. 1995;20:128–54.

    Article  CAS  PubMed  Google Scholar 

  36. Accolla EA, Ruiz MH, Horn A, et al. Brain networks modulated by subthalamic nucleus deep brain stimulation. Brain. 2016;139:2503–15.

    Article  PubMed  Google Scholar 

  37. Akram H, Sotiropoulos SN, Jbabdi S, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. NeuroImage. 2017;158:332–45.

    Article  PubMed  Google Scholar 

  38. Horn A, Reich M, Vorwerk J, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin H, Na P, Zhang D, et al. Brain connectivity markers for the identification of effective contacts in subthalamic nucleus deep brain stimulation. Hum Brain Mapp. 2020;41(8):2028–36.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsuboi T, Charbel M, Peterside DT, et al. Pallidal connectivity profiling of stimulation-induced dyskinesia in Parkinson’s disease. Mov Disord. 2021;36:380–8.

    Article  PubMed  Google Scholar 

  41. Karas PJ, Mikell CB, Christian E, et al. Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus. 2013;35:E1.

    Article  PubMed  Google Scholar 

  42. Coenen VA, Panksepp J, Hurwitz TA, et al. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci. 2012;24:223–36.

    Article  PubMed  Google Scholar 

  43. Baldermann JC, Melzer C, Zapf A, et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol Psychiatry. 2019;85:735–43.

    Article  PubMed  Google Scholar 

  44. Middlebrooks EH, Domingo RA, Vivas-Buitrago T, et al. Neuroimaging advances in deep brain stimulation: review of indications, anatomy, and brain connectomics. AJNR Am J Neuroradiol. 2020;41(9):1558–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okromelidze L, Tsuboi T, Eisinger RS, et al. Functional and structural connectivity patterns associated with clinical outcomes in deep brain stimulation of the globus pallidus internus for generalized dystonia. AJNR Am J Neuroradiol. 2020;41:508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rozanski VE, Vollmar C, Cunha JP, et al. Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. NeuroImage. 2014;84:435–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimpel, V.M.H., Middlebrooks, E., Santiago, N. (2023). Surgical Anatomy of the Basal Ganglia and Thalamus. In: Figueiredo, E.G., Rabelo, N.N., Welling, L.C. (eds) Brain Anatomy and Neurosurgical Approaches . Springer, Cham. https://doi.org/10.1007/978-3-031-14820-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14820-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14819-4

  • Online ISBN: 978-3-031-14820-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics