Skip to main content

Inner Product Functional Commitments with Constant-Size Public Parameters and Openings

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2022)

Abstract

Functional commitments (Libert et al. [ICALP’16]) allow a party to commit to a vector \(\boldsymbol{v}\) of length n and later open the commitment at functions of the committed vector succinctly, namely with communication logarithmic or constant in n. Existing constructions of functional commitments rely on trusted setups and have either O(1) openings and O(n) parameters, or they have short parameters generatable using public randomness but have \(O(\log n)\)-size openings. In this work, we ask whether it is possible to construct functional commitments in which both parameters and openings can be of constant size. Our main result is the construction of the first FC schemes matching this complexity. Our constructions support the evaluation of inner products over small integers; they are built using groups of unknown order and rely on succinct protocols over these groups that are secure in the generic group and random oracle model.

The full version of the paper can be found at https://eprint.iacr.org/2022/524.pdf

Dimitris Kolonelos—The third author is the contact author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is also easy to note that it is possible to construct an FC for polynomials from one for linear functions, by linearizing the polynomial.

  2. 2.

    One could use Bulletproofs arithmetic circuit protocol in order to simulate \(\mod p\) algebra over \(\mathbb {Z}_q\), at the price of a prover’s overhead.

  3. 3.

    In fact over the quotient group \(\mathbb {G}/\{1,-1\}\) of an RSA group, since we need to exclude the element \(-1 \in \mathbb {G}\) whose order is known.

  4. 4.

    In these types of proofs though one should set \(\ell \) to be of size \(2\lambda \) for the non-interactive case [8].

  5. 5.

    As we discuss next and in more detail in Sect. 3.3, the choice of \(\textsf{Hprime}\) depends on n.

  6. 6.

    We can securely fix the range of a hash function (as SHA512) by fixing some of its bits and truncating others.

  7. 7.

    We do not consider optimizations for the arguments of knowledge with which we could reduce the size of |C| by 1 and \(|\varLambda |\) by 6 group elements respectively.

References

  1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (Oct/Nov 2017). https://doi.org/10.1145/3133956.3134104

  2. Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: transparent constant-sized zksnarks. Cryptology ePrint Archive, Report 2022/419 (2022)

    Google Scholar 

  3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Chapter  Google Scholar 

  4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_23

    Chapter  Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  6. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

    Chapter  Google Scholar 

  7. Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_15

    Chapter  Google Scholar 

  8. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018)

    Google Scholar 

  9. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20

    Chapter  Google Scholar 

  10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  11. Bosma, W., Stevenhagen, P.: On the computation of quadratic \(2 \)-class groups. J. de théorie des nombres de Bordeaux 8(2), 283–313 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Buchmann, J., Hamdy, S.: A survey on IQ cryptography (2001). http://tubiblio.ulb.tu-darmstadt.de/100933/

  13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00020

  14. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

    Chapter  Google Scholar 

  15. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28

    Chapter  Google Scholar 

  16. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally aggregatable vector commitments and applications to verifiable decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_1

    Chapter  Google Scholar 

  17. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  18. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27

    Chapter  Google Scholar 

  19. Chu, H., Fiore, D., Kolonelos, D., Schröder, D.: Inner product functional commitments with constant-size public parameters and openings. Cryptology ePrint Archive (2022)

    Google Scholar 

  20. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: Motiwalla, J., Tsudik, G. (eds.) ACM CCS 99, pp. 46–51. ACM Press (1999). https://doi.org/10.1145/319709.319716

  21. Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_17

    Chapter  MATH  Google Scholar 

  22. Dobson, S., Galbraith, S.D., Smith, B.: Trustless unknown-order groups. Cryptology ePrint Archive (2020)

    Google Scholar 

  23. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  24. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_9

    Chapter  Google Scholar 

  25. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_32

    Chapter  Google Scholar 

  26. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

    Chapter  Google Scholar 

  27. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_18

    Chapter  Google Scholar 

  28. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  29. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19

    Chapter  Google Scholar 

  30. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.30

  31. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_30

    Chapter  Google Scholar 

  32. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26

    Chapter  Google Scholar 

  33. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14

    Chapter  Google Scholar 

  34. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arithmetic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 686–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_23

    Chapter  Google Scholar 

  35. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365746

  36. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_16

    Chapter  Google Scholar 

  37. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

    Chapter  Google Scholar 

  38. Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKs. Cryptology ePrint Archive, Report 2020/1275 (2020)

    Google Scholar 

  39. Wahby, R.S., Tzialla, I., Shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00060

  40. Wesolowski, B.: Efficient verifiable delay functions. Cryptology ePrint Archive, Report 2018/623 (2018). https://eprint.iacr.org/2018/623

  41. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13

    Chapter  Google Scholar 

  42. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and Privacy, pp. 859–876. IEEE Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00052

Download references

Acknowledgements

The second and third authors received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), by the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00) and RED2018-102321-T, and by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339). This work is also supported by a research grant (ref. PL-RGP1-2021-051) from Protocol Labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kolonelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, H., Fiore, D., Kolonelos, D., Schröder, D. (2022). Inner Product Functional Commitments with Constant-Size Public Parameters and Openings. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14791-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14790-6

  • Online ISBN: 978-3-031-14791-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics