Skip to main content

Laser Nanostructuring for SERS Applications

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

  • 1705 Accesses

Abstract

Surface-enhanced Raman scattering (SERS) is an advanced detecting method, permitting the identification of molecules by their unique vibrational fingerprints presenting in the enhanced Raman spectra. Due to its advantages on rapid detection, label-free, nondestructive, specificity, and excellent sensitivity, SERS is widely used in the fields of food detection, pollutant monitoring, and disease early diagnosis. Correlated to its two enhancement mechanisms – electromagnetic enhancement (EM) and chemical enhancement (CM) – the sensitivity of SERS highly depends on the substrates with well-designed nanostructures. Laser nanostructuring is a promising approach for fabricating versatile functional nanostructures for the SERS substrate needs. It is a one-step, maskless, and no-contact process with sufficient high processing efficiency, uniformity, and stability, which overpasses the available conventional processes for fabricating the nanostructures of SERS substrates. In addition, laser micro-nano structuring is able to fabricate specific wetting surfaces including patterned superhydrophilic center with superhydrophobic surroundings, by which the tested liquids can be concentrated up to 105 times by evaporation. Integrated with the hot spot nanostructures and the evaporation enrichment, the nanostructured SERS substrates via ultrafast laser are able to achieve 10−18 mol/L detection sensitivity, the highest available detection limit.

This chapter reviews the development and the state of the art on laser nanostructuring for SERS applications, including but not limited to the nanostructures for SERS substrates, the versatile nanostructures formed via ultrafast lasers on metals, the efforts to increase the sensibility of SERS substrates, the laser fabricated patterned superhydrophilic-superhydrophobic surfaces for evaporation concentration, the ultrasensitive SERS detection with patterned platform via evaporation enrichment, and the application cases on laser-nanostructured SERS substrates for cancer diagnosis, food safety evaluation, and others. This chapter ends with a summery and prospective section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Tezcan, I.H. Boyaci, A new and facile route to prepare gold nanoparticle clusters on anodic aluminium oxide as a SERS substrate. Talanta 232, 122426 (2021)

    Article  Google Scholar 

  2. L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, C. Gao, Gold nanoframes by nonepitaxial growth of Au on Agl nanocrystals for surface-enhanced Raman spectroscopy. Nano Lett. 15(7), 4448–4454 (2015)

    Article  ADS  Google Scholar 

  3. G. Zheng, L. Polavarapu, L.M. Liz-Marzan, I. Pastoriza-Santos, J. Perez-Juste, Gold nanoparticle-loaded filter paper: A recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem. Commun. 51(22), 4572–4575 (2015)

    Article  Google Scholar 

  4. J. Li, Y. Fan, X. Xue, L. Ma, S. Zou, Z. Fei, Z. Xie, Z. Zhang, Fabrication and simulation of V-shaped Ag nanorods as high-performance SERS substrates. Phys. Chem. Chem. Phys. 20(40), 25623–25628 (2018)

    Article  Google Scholar 

  5. L. Ma, H. Wu, Y. Huang, S. Zou, J. Li, Z. Zhang, High-performance real-time SERS detection with recyclable Ag Nanorods@HfO2 substrates. ACS Appl. Mater. Interfaces 8(40), 27162–27168 (2016)

    Article  Google Scholar 

  6. Q. Zhou, Y. Yang, J. Ni, Z. Li, Z. Zhang, Rapid detection of 2, 3, 3', 4, 4 '-pentachlorinated biphenyls by silver nanorods-enhanced Raman spectroscopy. Physica E 42(5), 1717–1720 (2010)

    Article  ADS  Google Scholar 

  7. X. Zhao, M. Deng, G. Rao, Y. Yan, C. Wu, Y. Jiao, A. Deng, C. Yan, J. Huang, S. Wu, High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control. Small 14(38), 1802477 (2018)

    Article  Google Scholar 

  8. R.-C. Wang, C.-H. Li, Cu, Cu-Cu2O core-shell, and hollow Cu2O nanodendrites: Structural evolution and reverse surface-enhanced Raman scattering. Acta Mater. 59(2), 822–829 (2011)

    Article  ADS  Google Scholar 

  9. Y. Tan, J. Gu, W. Xu, Z. Chen, D. Liu, Q. Liu, D. Zhang, Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA Base detection. ACS Appl. Mater. Interfaces 5(20), 9878–9882 (2013)

    Article  Google Scholar 

  10. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future. Mater. Today 15(1–2), 16–25 (2012)

    Article  Google Scholar 

  11. C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121(3048), 501 (1928)

    Article  ADS  Google Scholar 

  12. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  ADS  Google Scholar 

  13. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra from electrode surfaces. J. Chem. Soc. Chem. Commun. 3, 80–81 (1973)

    Article  Google Scholar 

  14. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977)

    Article  Google Scholar 

  15. D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977)

    Article  Google Scholar 

  16. X. Wang, W. Shi, G. She, L. Mu, Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys. 14(17), 5891–5901 (2012)

    Article  Google Scholar 

  17. Z. Xian, Z. Qin, H. Yu, L. Zhengcao, Z. Zhengjun, The nanofabrication and application of substrates for surface-enhanced Raman scattering. Int. J. Spectro. 35068, 4 (2012)

    Google Scholar 

  18. X. Sun, H. Li, A. Review, Nanofabrication of Surface-Enhanced Raman Spectroscopy (SERS) substrates. Curr. Nanosci. 12(2), 175–183 (2016)

    Article  ADS  Google Scholar 

  19. J. Jiang, S. Zou, L. Ma, S. Wang, J. Liao, Z. Zhang, Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Appl. Mater. Interfaces 10(10), 9129–9135 (2018)

    Article  Google Scholar 

  20. J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42(6), 734–742 (2009)

    Article  Google Scholar 

  21. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, J.G. Hou, Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 5(2), 952–958 (2011)

    Article  Google Scholar 

  22. E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)

    Article  Google Scholar 

  23. E.C.L. Ru, M. Meyer, E. Blackie, P.G. Etchegoin, Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J. Raman Spectrosc. 39(9), 1127–1134 (2008)

    Article  ADS  Google Scholar 

  24. S.Y. Lee, S.-H. Kim, M.P. Kim, H.C. Jeon, H. Kang, H.J. Kim, B.J. Kim, S.-M. Yang, Freestanding and arrayed nanoporous microcylinders for highly active 3D SERS substrate. Chem. Mater. 25(12), 2421–2426 (2013)

    Article  Google Scholar 

  25. Y. Huang, Y. Chen, X. Xue, Y. Zhai, L. Wang, Z. Zhang, Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement. Opt. Lett. 43(10), 2332–2335 (2018). https://doi.org/10.1364/ol.43.002332

    Article  ADS  Google Scholar 

  26. M.V. Canamares, C. Chenal, R.L. Birke, J.R. Lombardi, DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C 112(51), 20295–20300 (2008)

    Article  Google Scholar 

  27. M.M. Dvoynenko, J.-K. Wang, Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt. Lett. 32(24), 3552–3554 (2007)

    Article  ADS  Google Scholar 

  28. M. Sidorova, S.G. Pavlov, A.D. Semenov, M. Gensch, H.W. Huebers, Fiber-dispersive Raman spectrometer with single-photon sensitivity. Opt. Express 29(13), 20941–20951 (2021)

    Article  ADS  Google Scholar 

  29. J. Prinz, C. Heck, L. Ellerik, V. Merk, I. Bald, DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Nanoscale 8(10), 5612–5620 (2016)

    Article  ADS  Google Scholar 

  30. G.C. Schatz, Theoretical-studies of surface enhanced Raman-scattering. Acc. Chem. Res. 17(10), 370–376 (1984)

    Article  Google Scholar 

  31. Y. Huang, L. Ma, J. Li, Z. Zhang, Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. Nanotechnology 28(10), 105203 (2017)

    Article  ADS  Google Scholar 

  32. M.J. Vesga, D. McKechnie, S. Laing, H. Kearns, K. Faulds, K. Johnston, J. Sefcik, Effect of glycine on aggregation of citrate-functionalised gold nanoparticles and SERS measurements. Colloids Surf. A Physicochem. Eng. Asp. 621, 126523 (2021)

    Article  Google Scholar 

  33. H. Zhang, F. Zhou, M. Liu, D. Liu, D. Men, W. Cai, G. Duan, Y. Li, Spherical nanoparticle arrays with tunable nanogaps and their hydrophobicity enhanced rapid SERS detection by localized concentration of droplet evaporation. Adv. Mater. Interfaces 2(9), 1500031 (2015)

    Article  Google Scholar 

  34. L.B. He, Y.L. Wang, X. Xie, M. Han, F.Q. Song, B.J. Wang, W.L. Chen, H.X. Xu, L.T. Sun, Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies. Phys. Chem. Chem. Phys. 19(7), 5091–5101 (2017)

    Article  Google Scholar 

  35. Y. Huang, Q. Zhou, M. Hou, L. Ma, Z. Zhang, Nanogap effects on near-and far-field plasmonic behaviors of metallic nanoparticle dimers. Phys. Chem. Chem. Phys. 17(43), 29293–29298 (2015)

    Article  Google Scholar 

  36. E.N. Esenturk, A.R.H. Walker, Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 40(1), 86–91 (2009)

    Article  ADS  Google Scholar 

  37. G. Lu, T.Z. Forbes, A.J. Haes, SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141(17), 5137–5143 (2016)

    Article  ADS  Google Scholar 

  38. M. Chirumamilla, A. Gopalakrishnan, A. Toma, R.P. Zaccaria, R. Krahne, Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25(23), 7 (2014)

    Article  Google Scholar 

  39. X.-B. Huang, S.-H. Wu, H.-C. Hu, J.-J. Sun, AuNanostar@4-MBA@Au core-shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of ochratoxin A. ACS Sens. 5(8), 2636–2643 (2020)

    Article  Google Scholar 

  40. X. Meng, J. Dyer, Y. Huo, C. Jiang, Greater SERS activity of ligand-stabilized gold nanostars with sharp branches. Langmuir 36(13), 3558–3564 (2020)

    Article  Google Scholar 

  41. Y. Ran, P. Strobbia, V. Cupil-Garcia, T. Vo-Dinh, Fiber-optrode SERS probes using plasmonic silver-coated gold nanostars. Sens. Actuators B Chem. 287, 95–101 (2019)

    Article  Google Scholar 

  42. R. Omar, A.E. Naciri, S. Jradi, Y. Bettie, J. Toufaily, H. Mortada, S. Akil, One-step synthesis of a monolayer of monodisperse gold nanocubes for SERS substrates. J. Mater. Chem. C 5(41), 10813–10821 (2017)

    Article  Google Scholar 

  43. H. Wang, K.B. Li, C. Xu, S.C. Xu, G.H. Li, Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity. J. Alloys Compd. 772, 150–156 (2019)

    Article  Google Scholar 

  44. L. Liu, Y. Wu, N. Yin, H. Zhang, H. Ma, Silver nanocubes with high SERS performance. J. Quant. Spectrosc. Radiat. Transf. 240, 106682 (2020)

    Article  Google Scholar 

  45. C. Kuttner, M. Mayer, M. Dulle, A. Moscoso, J.M. Lopez-Romero, S. Foerster, A. Fery, J. Perez-Juste, R. Contreras-Caceres, Seeded growth synthesis of gold nanotriangles: Size control, SAXS analysis, and SERS performance. ACS Appl. Mater. Interfaces 10(13), 11152–11163 (2018)

    Article  Google Scholar 

  46. F. Liebig, R.M. Sarhan, M. Sander, W. Koopman, R. Schuetz, M. Bargheer, J. Koetz, Deposition of gold nanotriangles in large scale close-packed monolayers for X-ray-based temperature calibration and SERS monitoring of plasmon-driven catalytic reactions. ACS Appl. Mater. Interfaces 9(23), 20247–20253 (2017)

    Article  Google Scholar 

  47. C. Wu, E. Chen, J. Wei, Surface enhanced Raman spectroscopy of Rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles. Sens. Actuators A Phys. 506, 450–456 (2016)

    Google Scholar 

  48. M.A. Casado-Rodriguez, M. Sanchez-Molina, A. Lucena-Serrano, C. Lucena-Serrano, B. Rodriguez-Gonzalez, M. Algarra, A. Diaz, M. Valpuesta, J.M. Lopez-Romero, J. Perez-Juste, R. Contreras-Caceres, Synthesis of vinyl-terminated Au nanoprisms and nanooctahedra mediated by 3-butenoic acid: Direct Au@pNIPAM fabrication with improved SERS capabilities. Nanoscale 8(8), 4557–4564 (2016)

    Article  ADS  Google Scholar 

  49. X. Geng, W. Leng, N.A. Carter, P.J. Vikesland, T.Z. Grove, Protein-aided formation of triangular silver nanoprisms with enhanced SERS performance. J. Mater. Chem. B 4(23), 4182–4190 (2016)

    Article  Google Scholar 

  50. S. Roy, C.M. Ajmal, S. Baik, J. Kim, Silver nanoflowers for single-particle SERS with 10 pM sensitivity. Nanotechnology 28(46), 465705 (2017)

    Article  Google Scholar 

  51. S. Zhen, T. Wu, X. Huang, Y. Li, C. Huang, Facile synthesis of gold nanoflowers as SERS substrates and their morphological transformation induced by iodide ions. Sci. China Chem. 59(8), 1045–1050 (2016)

    Article  Google Scholar 

  52. V.M. Kariuki, J.C. Hoffmeier, I. Yazgan, O.A. Sadik, Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers. Nanoscale 9(24), 8330–8340 (2017)

    Article  Google Scholar 

  53. P. Wang, M. Xia, O. Liang, K. Sun, A.F. Cipriano, T. Schroeder, H. Liu, Y.-H. Xie, Label-free SERS selective detection of dopamine and serotonin using Graphene-Au nanopyramid heterostructure. Anal. Chem. 87(20), 10255–10261 (2015)

    Article  Google Scholar 

  54. K.-H. Tsui, X. Li, J.K.H. Tsoi, S.-F. Leung, T. Lei, W.Y. Chak, C. Zhang, J. Chen, G.S.P. Cheung, Z. Fan, Low-cost, flexible, disinfectant-free and regular-array three-dimensional nanopyramid antibacterial films for clinical applications. Nanoscale 10(22), 10436–10442 (2018)

    Article  Google Scholar 

  55. P. Zheng, S. Kasani, X. Shi, A.E. Boryczka, F. Yang, H. Tang, M. Li, W. Zheng, D.E. Elswick, N. Wu, Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array. Anal. Chim. Acta 1040, 158–165 (2018)

    Article  Google Scholar 

  56. K. Liu, S. Jin, Z. Song, L. Jiang, L. Ma, Z. Zhang, Label-free surface-enhanced Raman spectroscopy of serum based on multivariate statistical analysis for the diagnosis and staging of lung adenocarcinoma. Vib. Spectrosc. 100, 177–184 (2019)

    Article  Google Scholar 

  57. L. Zhang, X. Lang, A. Hirata, M. Chen, Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. ACS Nano 5(6), 4407–4413 (2011)

    Article  Google Scholar 

  58. H.J. Huang, M.-H. Shiao, Y.-W. Lin, B.-J. Lin, J. Su, Y.-S. Lin, H.-W. Chang, Au@Ag dendritic nanoforests for surface-enhanced Raman scattering sensing. Nano 11(7), 1736 (2021)

    Google Scholar 

  59. D. Chen, X. Zhu, J. Huang, G. Wang, Y. Zhao, F. Chen, J. Wei, Z. Song, Y. Zhao, Polydopamine@Gold nanowaxberry enabling improved SERS sensing of pesticides, pollutants, and explosives in complex samples. Anal. Chem. 90(15), 9048–9054 (2018)

    Article  Google Scholar 

  60. Y. Wang, M. Zhang, L. Feng, B. Dong, T. Xu, D. Li, L. Jiang, L. Chi, Tape-imprinted hierarchical lotus seedpod-like arrays for extraordinary surface-enhanced Raman spectroscopy. Small 15(19), 1804527 (2019)

    Article  Google Scholar 

  61. X. Wang, W. Shi, Z. Jin, W. Huang, J. Lin, G. Ma, S. Li, L. Guo, Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem. Int. Ed. 56(33), 9851–9855 (2017)

    Article  Google Scholar 

  62. G. Song, J. Li, Y. Yuan, L. Yao, J. Gu, Q. Liu, W. Zhang, Y. Su, D. Zhang, Large-area 3D hierarchical superstructures assembled from colloidal nanoparticles. Small 15(18), 1805308 (2019)

    Article  Google Scholar 

  63. B. Lin, P. Kannan, B. Qiu, Z. Lin, L. Guo, On-spot surface enhanced Raman scattering detection of Aflatoxin B1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chem. 307, 125528 (2019)

    Article  Google Scholar 

  64. Z. Zhu, B. Bai, O. You, Q. Li, S. Fan, Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light Sci. Appl. 4, e296 (2015)

    Article  ADS  Google Scholar 

  65. M.I. Stockman, S.V. Faleev, D.J. Bergman, Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88(6), 067402 (2002)

    Article  ADS  Google Scholar 

  66. K.R. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91(22), 227402 (2003)

    Article  ADS  Google Scholar 

  67. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R.P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, E. Di Fabrizio, 3D nanostar dimers with a Sub-10-nm gap for single-/few- molecule surface-enhanced Raman scattering. Adv. Mater. 26(15), 2353–2358 (2014)

    Article  Google Scholar 

  68. V.G. Kravets, G. Zoriniants, C.P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A.K. Geim, W.L. Barnes, A.N. Grigorenko, Cascaded optical field enhancement in composite plasmonic nanostructures. Phys. Rev. Lett. 105(24), 246806 (2010)

    Article  ADS  Google Scholar 

  69. A. Dutta, K. Alam, T. Nuutinen, E. Hulkko, P. Karvinen, M. Kuittinen, J.J. Toppari, E.M. Vartiainen, Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers. Opt. Express 27(21), 30031–30043 (2019)

    Article  ADS  Google Scholar 

  70. L. Chen, H. Sun, Y. Zhao, Y. Zhang, Y. Wang, Y. Liu, X. Zhang, Y. Jiang, Z. Hua, J. Yang, Plasmonic-induced SERS enhancement of shell-dependent Ag@Cu2O core-shell nanoparticles. RSC Adv. 7(27), 16553–16560 (2017)

    Article  ADS  Google Scholar 

  71. Y. Wang, J. Liu, Y. Ozaki, Z. Xu, B. Zhao, Effect of TiO2 on altering direction of interfacial charge transfer in a TiO2-Ag-MPY-FePc system by SERS. Angew Chem Int Ed 58(24), 8172–8176 (2019)

    Article  Google Scholar 

  72. Q. Huang, J. Li, Enhanced photocatalytic and SERS properties of ZnO/Ag hierarchical multipods-shaped nanocomposites. Mater. Lett. 204, 85–88 (2017)

    Article  Google Scholar 

  73. S. Shen, B. Zhao, H. Wang, Z. Li, G. Qu, Z. Guo, T. Zhou, W. Song, X. Wang, W. Ruan, CdTe quantum dots modified polystyrene spheres with Ag nanoparticle caps: Applications both in fluorescence and in SERS. Colloids Surf., A 443, 467–472 (2014)

    Article  Google Scholar 

  74. C. Sun, W. Dong, J. Peng, X. Wan, Z. Sun, D. Li, S. Wang, Dual-mode fluorescence-SERS sensor for sensitive and selective detection of uranyl ions based on satellite Fe3O4-Au@CdTe nanostructure. Sens. Actuators B Chem. 325, 128644 (2020)

    Article  Google Scholar 

  75. B. Zhang, X. Yin, D. Zhen, W. Gu, Y. Liu, Q. Cai, Au nanoparticle-modified WO3 nanoflowers/TiO2 nanotubes used for the SERS detection of dyes. New J. Chem. 41(22), 13968–13973 (2017)

    Article  Google Scholar 

  76. G. Neri, E. Fazio, P.G. Mineo, A. Scala, A. Piperno, SERS sensing properties of new graphene/gold nanocomposite. Nano 9(9), 1236 (2019)

    Google Scholar 

  77. S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, H.-C. Peng, Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 61, 232–240 (2014)

    Article  Google Scholar 

  78. R. Panneerselvam, L. Xiao, K.B. Waites, T.P. Atkinson, R.A. Dluhy, A rapid and simple chemical method for the preparation of Ag colloids for surface-enhanced Raman spectroscopy using the Ag mirror reaction. Vib. Spectrosc. 98, 1–7 (2018)

    Article  Google Scholar 

  79. A. Zielinska, E. Skwarek, A. Zaleska, M. Gazda, J. Hupka, Preparation of silver nanoparticles with controlled particle size, in 22nd conference of the european colloid and interface society, ECIS 2008, ed. by Z. Adamczyk, P. Warszynski, (2009), pp. 1560–1566

    Google Scholar 

  80. R. He, X.F. Qian, J. Yin, Z.K. Zhu, Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12(12), 3783–3786 (2002)

    Article  Google Scholar 

  81. W. Zhang, X. Qiao, J. Chen, Synthesis of silver nanoparticles – Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng., B 142(1), 1–15 (2007)

    Article  Google Scholar 

  82. J.-K. Yang, I.-J. Hwang, M.G. Cha, H.-I. Kim, D. Yim, D.H. Jeong, Y.-S. Lee, J.-H. Kim, Reaction kinetics-mediated control over silver nanogap shells as surface-enhanced Raman scattering nanoprobes for detection of Alzheimer’s disease biomarkers. Small 15(19), 1900613 (2019)

    Article  Google Scholar 

  83. N.A. Hatab, C.-H. Hsueh, A.L. Gaddis, S.T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10(12), 4952–4955 (2010)

    Article  ADS  Google Scholar 

  84. W. Wu, M. Hu, F.S. Ou, Z. Li, R.S. Williams, Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21(25), 255502 (2010)

    Article  ADS  Google Scholar 

  85. T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104(45), 10549–10556 (2000)

    Article  Google Scholar 

  86. L.A. Dick, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106(4), 853–860 (2002)

    Article  Google Scholar 

  87. B. Mondal, S.K. Saha, Fabrication of SERS substrate using nanoporous anodic alumina template decorated by silver nanoparticles. Chem. Phys. Lett. 497(1–3), 89–93 (2010)

    Article  ADS  Google Scholar 

  88. S.H. Macomber, T.E. Furtak, T.M. Devine, Surface-enhanced raman-scattering magnified by photochemical activation of the silver electrode in aqueous halide electrolytes. Chem. Phys. Lett. 90(6), 439–444 (1982)

    Article  ADS  Google Scholar 

  89. D. Thierry, C. Leygraf, The influence of photoalteration on surface-enhanced raman-scattering from copper electrodes. Surf. Sci. 149(2–3), 592–600 (1985)

    Article  ADS  Google Scholar 

  90. J.D. Driskell, S. Shanmukh, Y. Liu, S.B. Chaney, X.J. Tang, Y.P. Zhao, R.A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J. Phys. Chem. C 112(4), 895–901 (2008)

    Article  Google Scholar 

  91. L.H. Qian, M.W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91(8), 083105 (2007)

    Article  ADS  Google Scholar 

  92. K. Christou, I. Knorr, J. Ihlemann, H. Wackerbarth, V. Beushausen, Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films. Langmuir 26(23), 18564–18569 (2010)

    Article  Google Scholar 

  93. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003)

    Article  Google Scholar 

  94. L.M. Liz-Marzan, Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1), 32–41 (2006)

    Article  Google Scholar 

  95. M. Rycenga, K.K. Hou, C.M. Cobley, A.G. Schwartz, P.H.C. Camargo, Y. Xia, Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths. Phys. Chem. Chem. Phys. 11(28), 5903–5908 (2009)

    Article  Google Scholar 

  96. C. Han-Wei, T. Yu-Chen, C. Chung-Wei, L. Cen-Ying, L. Yen-Wen, W. Tzong-Ming, Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J. Colloid Interface Sci. 360(1), 305–308 (2011)

    Article  ADS  Google Scholar 

  97. L. Lu, J. Zhang, L. Jiao, Y. Guan, Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scattering. Nano 9(7), 916 (2019)

    Google Scholar 

  98. X. Luo, W. Liu, C. Chen, G. Jiang, X. Hu, H. Zhang, M. Zhong, Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation. Opt. Laser Technol. 139, 106969 (2021)

    Article  Google Scholar 

  99. S. Hamad, G.K. Podagatlapalli, M.A. Mohiddon, S.V. Rao, Surface enhanced fluorescence from corroles and SERS studies of explosives using copper nanostructures. Chem. Phys. Lett. 621, 171–176 (2015)

    Article  ADS  Google Scholar 

  100. Z. Lao, Y. Zheng, Y. Dai, Y. Hu, J. Ni, S. Ji, Z. Cai, Z.J. Smith, J. Li, L. Zhang, D. Wu, J. Chu, Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS. Adv. Funct. Mater. 30(15), 1909467 (2020)

    Article  Google Scholar 

  101. V. Parmar, P.K. Kanaujia, R.K. Bommali, G.V. Prakash, Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication. Opt. Mater. 72, 86–90 (2017)

    Article  ADS  Google Scholar 

  102. D. Acevedo, H. Salavagione, A. Lasagni, E. Morallon, F. Muecklich, C. Barbero, SERS active surface in two steps, patterning and metallization. Adv. Eng. Mater. 15(5), 325–329 (2013)

    Article  Google Scholar 

  103. R. Buividas, P.R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann. Phys. 524(11), L5–L10 (2012)

    Article  ADS  Google Scholar 

  104. T.B. Nguyen, N.A. Nguyen, T.D. Tran, Production of SERS substrates using ablated copper surfaces and gold/silver nanoparticles prepared by laser ablation in liquids. J. Electron. Mater. 49(10), 6232–6239 (2020)

    Article  ADS  Google Scholar 

  105. A. Hamdorf, M. Olson, C.-H. Lin, L. Jiang, J. Zhou, H. Xiao, H.-L. Tsai, Femtosecond and nanosecond laser fabricated substrate for surface-enhanced Raman scattering. Opt. Lett. 36(17), 3353–3355 (2011)

    Article  ADS  Google Scholar 

  106. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E.L. Izake, P.M. Fredericks, SERS substrate for detection of explosives. Nanoscale 4(23), 7419–7424 (2012)

    Article  ADS  Google Scholar 

  107. S. Hoehm, M. Herzlieb, A. Rosenfeld, J. Krueger, J. Bonse, Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics. Appl. Surf. Sci. 374, 331–338 (2016)

    Article  ADS  Google Scholar 

  108. P. Fan, R. Pang, M. Zhong, Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced cassie-baxter stability and durability. Langmuir 35(51), 16693–16711 (2019)

    Article  Google Scholar 

  109. Q. Yang, X. Li, L. Jiang, N. Zhang, G. Zhang, X. Shi, K. Zhang, J. Hu, Y. Lu, Nanopillar arrays with nanoparticles fabricated by a femtosecond laser pulse train for highly sensitive SERRS. Opt. Lett. 40(9), 2045–2048 (2015). https://doi.org/10.1364/ol.40.002045

    Article  ADS  Google Scholar 

  110. S. Bai, D. Serien, A. Hu, K. Sugioka, 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv. Funct. Mater. 28(23), 1706262 (2018)

    Article  Google Scholar 

  111. L. Xiao, C. Mingyong, L. Weijian, C. Changhao, P. Rui, Z. Hongjun, Z. Minlin, Flexible control over optical reflection property of metallic surfaces via pulse laser. J. Laser Appl. 31(2), 022502 (2019)

    Article  Google Scholar 

  112. J. Long, Z. Cao, C. Lin, C. Zhou, Z. He, X. Xie, Formation mechanism of hierarchical micro- and nanostructures on copper induced by low-cost nanosecond lasers. Appl. Surf. Sci. 464, 412–421 (2019)

    Article  ADS  Google Scholar 

  113. P. Fan, M. Zhong, B. Bai, G. Jin, H. Zhang, Tuning the optical reflection property of metal surfaces via micro–nano particle structures fabricated by ultrafast laser. Appl. Surf. Sci. 359, 7–13 (2015)

    Article  ADS  Google Scholar 

  114. C.-H. Lin, L. Jiang, Y.-H. Chai, H. Xiao, S.-J. Chen, H.-L. Tsai, One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Opt. Express 17(24), 21581–21589 (2009). https://doi.org/10.1364/oe.17.021581

    Article  ADS  Google Scholar 

  115. B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, H.-B. Sun, Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab Chip 11(19), 3347–3351 (2011)

    Article  Google Scholar 

  116. B.-B. Xu, R. Zhang, X.-Q. Liu, H. Wang, Y.-L. Zhang, H.-B. Jiang, L. Wang, Z.-C. Ma, J.-F. Ku, F.-S. Xiao, H.-B. Sun, On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring. Chem. Commun. 48(11), 1680–1682 (2012)

    Article  Google Scholar 

  117. S. Milles, M. Soldera, T. Kuntze, A.F. Lasagni, Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning. Appl. Surf. Sci. 525, 146518 (2020)

    Article  Google Scholar 

  118. J.T. Cardoso, A.I. Aguilar-Morales, S. Alamri, D. Huerta-Murillo, F. Cordovilla, A.F. Lasagni, J.L. Ocana, Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy. Opt. Lasers Eng. 111, 193–200 (2018)

    Article  Google Scholar 

  119. Y. Lin, J. Han, M. Cai, W. Liu, X. Luo, H. Zhang, M. Zhong, Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J. Mater. Chem. A 6(19), 9049–9056 (2018)

    Article  Google Scholar 

  120. I. Aleknavičienė, E. Pabrėža, M. Talaikis, M. Jankunec, G. Račiukaitis, Low-cost SERS substrate featuring laser-ablated amorphous nanostructure. Appl. Surf. Sci. 571, 151248 (2022)

    Article  Google Scholar 

  121. L. Chen, T. Zhai, X. Zhang, C. Unger, J. Koch, B.N. Chichkov, P.J. Klar, Polarization-dependent SERS effects of laser-generated sub-100 nm antenna structures. Nanotechnology 25(26), 265302 (2014)

    Article  ADS  Google Scholar 

  122. Z.-C. Ma, Y.-L. Zhang, B. Han, X.-Q. Liu, H.-Z. Zhang, Q.-D. Chen, H.-B. Sun, Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates. Adv. Mater. Technol. 2(6), 1600270 (2017)

    Article  Google Scholar 

  123. B. Chandu, M.S.S. Bharati, S.V. Rao, Ieee, Ag nanoparticles coupled with Ag nanostructures as efficient SERS platform for dtection of 2, 4-dinitrotoluene, 3rd Biennial IEEE Workshop on Recent Advances in Photonics (WRAP), Mahindra Ecole Centrale, Hyderabad, India (2017)

    Google Scholar 

  124. W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, J. Zhao, Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology 29(20), 205301 (2018)

    Article  ADS  Google Scholar 

  125. Y. Han, Z. Liang, H. Sun, H. Xiao, H.-L. Tsai, Nanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering. Appl. Phys. A-Mater. Sci. Process. 102(2), 415–419 (2011)

    Article  ADS  Google Scholar 

  126. R. Kurnoothala, S.V. Muthukumar, K.C. Vishnubhatla, Facile fabrication of integrated microfluidic SERS substrate by femtosecond laser sintering of silver nano particles. Opt. Mater. 111, 110518 (2021)

    Article  Google Scholar 

  127. R.L. Aggarwal, L.W. Farrar, E.D. Diebold, D.L. Polla, Measurement of the absolute Raman scattering cross section of the 1584-cm(-1) band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates. J. Raman Spectrosc. 40(9), 1331–1333 (2009)

    Article  ADS  Google Scholar 

  128. Y. Han, X. Lan, T. Wei, H.-L. Tsai, H. Xiao, Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Appl. Phys. A-Mater. Sci. Process. 97(3), 721–724 (2009)

    Article  ADS  Google Scholar 

  129. R. Buividas, N. Fahim, J. Juodkazyte, S. Juodkazis, Novel method to determine the actual surface area of a laser-nanotextured sensor. Appl. Phys. A-Mater. Sci. Process. 114(1), 169–175 (2014)

    Article  ADS  Google Scholar 

  130. R. Botta, P. Eiamchai, M. Horprathum, S. Limwichean, C. Chananonnawathorn, V. Patthanasettakul, R. Maezono, A. Jomphoak, N. Nuntawong, 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments. Sens. Actuators B Chem. 304, 12 (2020)

    Article  Google Scholar 

  131. J. Yang, J. Li, Z. Du, Q. Gong, J. Teng, M. Hong, Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci. Rep. 4, 6657 (2014)

    Article  ADS  Google Scholar 

  132. E.D. Diebold, N.H. Mack, S.K. Doom, E. Mazur, Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering. Langmuir 25(3), 1790–1794 (2009)

    Article  Google Scholar 

  133. L.N. Fang, J.C. Li, J.R. Zhang, D.D. Han, Femtosecond laser structuring for flexible surface-enhanced Raman spectroscopy substrates. IEEE Photonics J. 13(2), 6800908 (2021)

    Article  Google Scholar 

  134. K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. Express 24(10), 10352–10358 (2016)

    Article  ADS  Google Scholar 

  135. J.D. Spitzberg, A. Zrehen, X.F. van Kooten, A. Meller, Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 1900422 (2019)

    Google Scholar 

  136. P.E. Sheehan, L.J. Whitman, Detection limits for nanoscale biosensors. Nano Lett. 5(4), 803–807 (2005)

    Article  ADS  Google Scholar 

  137. P.R. Nair, M.A. Alam, Performance limits of nanobiosensors. Appl. Phys. Lett. 88(23), 233120 (2006)

    Article  ADS  Google Scholar 

  138. Z. Huang, A. Nagpal, S. Siddhanta, I. Barman, Leveraging coffee-ring effect on plasmonic paper substrate for sensitive analyte detection using Raman spectroscopy. J. Raman Spectrosc. 49(9), 1552–1558 (2018)

    Article  ADS  Google Scholar 

  139. F. Gentile, G. Das, M.L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, E. Di Fabrizio, Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices. Microelectron. Eng. 87(5–8), 798–801 (2010)

    Article  Google Scholar 

  140. S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19(21), 3423–3424 (2007)

    Article  ADS  Google Scholar 

  141. E. Bormashenko, O. Gendelman, G. Whyman, Superhydrophobicity of lotus leaves versus birds wings: Different physical mechanisms leading to similar phenomena. Langmuir 28(42), 14992–14997 (2012)

    Article  Google Scholar 

  142. M. Gross, F. Varnik, D. Raabe, I. Steinbach, Small droplets on superhydrophobic substrates. Phys. Rev. E 81, 051606 (2010)

    Article  ADS  Google Scholar 

  143. F. Guo, H. Yang, J. Mao, J. Huang, X. Wang, Y. Lai, Bioinspired fabrication SERS substrate based on superwettable patterned platform for multiphase high-sensitive detecting. Compos. Commun. 10, 151–156 (2018)

    Article  ADS  Google Scholar 

  144. Y. Song, T. Xu, L.-P. Xu, X. Zhang, Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale 10(45), 20990–20994 (2018)

    Article  Google Scholar 

  145. B. Shang, Y. Wang, P. Yang, B. Peng, Z. Deng, Synthesis of superhydrophobic polydopamine-ag microbowl/nanoparticle array substrates for highly sensitive, durable and reproducible surface-enhanced Raman scattering detection. Sens. Actuators B Chem. 255, 995–1005 (2018)

    Article  Google Scholar 

  146. J. Long, M. Zhong, H. Zhang, P. Fan, Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J. Colloid Interface Sci. 441, 1–9 (2015)

    Article  ADS  Google Scholar 

  147. J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal. ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015)

    Article  Google Scholar 

  148. Z.-X. Yan, Y.-L. Zhang, W. Wang, X.-Y. Fu, H.-B. Jiang, Y.-Q. Liu, P. Verma, S. Kawata, H.-B. Sun, Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference. ACS Appl. Mater. Interfaces 7(49), 27059–27065 (2015)

    Article  Google Scholar 

  149. J.E. George, V.K. Unnikrishnan, D. Mathur, S. Chidangil, S.D. George, Flexible superhydrophobic SERS substrates fabricated by in situ reduction of Ag on femtosecond laser-written hierarchical surfaces. Sens. Actuators B Chem. 272, 485–493 (2018)

    Article  Google Scholar 

  150. A. Wang, L. Jiang, X. Li, Q. Xie, B. Li, Z. Wang, K. Du, Y. Lu, Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection. J. Mater. Chem. B 5(4), 777–784 (2017)

    Article  Google Scholar 

  151. P. Fu, X. Shi, F. Jiang, X. Xu, Superhydrophobic nanostructured copper substrate as sensitive SERS platform prepared by femtosecond laser pulses. Appl. Surf. Sci. 501, 144269 (2020)

    Article  Google Scholar 

  152. L. Jiang, Bio-inspired, smart, multiscale interfacial materials. J. Biol. Inorg. Chem. 19, S153–S153 (2014)

    Google Scholar 

  153. J. Long, L. Pang, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir 32(4), 1065–1072 (2016)

    Article  Google Scholar 

  154. W. Liu, P. Fan, M. Cai, X. Luo, C. Chen, R. Pan, H. Zhang, M. Zhong, An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection. Nanoscale 11(18), 8940–8949 (2019)

    Article  Google Scholar 

  155. A. Zhizhchenko, A. Kuchmizhak, O. Vitrik, Y. Kulchin, S. Juodkazis, On-demand concentration of an analyte on laser-printed polytetrafluoroethylene. Nanoscale 10(45), 21414–21424 (2018)

    Article  Google Scholar 

  156. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5(11), 683–688 (2011)

    Article  Google Scholar 

  157. F. Gentile, M.L. Coluccio, E. Rondanina, S. Santoriello, D. Di Mascolo, A. Accardo, M. Francardi, F. De Angelis, P. Candeloro, E. Di Fabrizio, Non periodic patterning of super-hydrophobic surfaces for the manipulation of few molecules. Microelectron. Eng. 111, 272–276 (2013)

    Article  Google Scholar 

  158. W. Song, D. Psaltis, K.B. Crozier, Superhydrophobic bull’s-eye for surface-enhanced Raman scattering. Lab Chip 14(20), 3907–3911 (2014)

    Article  Google Scholar 

  159. F. Chu, S. Yan, J. Zheng, L. Zhang, H. Zhang, K. Yu, X. Sun, A. Liu, Y. Huang, A simple laser ablation-assisted method for fabrication of superhydrophobic SERS substrate on teflon film. Nanoscale Res. Lett. 13(1), 244 (2018)

    Article  ADS  Google Scholar 

  160. X. Luo, R. Pan, M. Cai, W. Liu, C. Chen, G. Jiang, X. Hu, H. Zhang, M. Zhong, Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment. Sens. Actuators B Chem. 326, 128826 (2021)

    Article  Google Scholar 

  161. X. Hu, R. Pan, M. Cai, W. Liu, X. Luo, C. Chen, G. Jiang, M. Zhong, Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration. Adv. Opt. Technol. 9(1–2), 89–100 (2020)

    Article  ADS  Google Scholar 

  162. W. Liu, R. Pan, M. Cai, X. Luo, C. Chen, G. Jiang, X. Hu, H. Zhang, M. Zhong, Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces. J. Mater. Chem. A 8(14), 6647–6660 (2020)

    Article  Google Scholar 

  163. W. Liu, X. Luo, C. Chen, G. Jiang, X. Hu, H. Zhang, M. Zhong, Directional anchoring patterned liquid-infused superamphiphobic surfaces for high-throughput droplet manipulation. Lab Chip 21(7), 1373–1384 (2021)

    Article  Google Scholar 

  164. X. Ma, L. Jiang, X. Li, B. Li, J. Huang, J. Sun, Z. Wang, Z. Xu, L. Qu, Y. Lu, T. Cui, Hybrid superhydrophilic-superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection. Microsyst. Nanoeng. 5(1), 48 (2019)

    Article  ADS  Google Scholar 

  165. H. Yang, X. Gun, G. Pang, Z. Zheng, C. Li, C. Yang, M. Wang, K. Xu, Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Opt. Express 29(11), 16904–16913 (2021). https://doi.org/10.1364/oe.423789

    Article  ADS  Google Scholar 

  166. G. Pavliuk, D. Pavlov, E. Mitsai, O. Vitrik, A. Mironenko, A. Zakharenko, S.A. Kulinich, S. Juodkazis, S. Bratskaya, A. Zhizhchenko, A. Kuchmizhak, Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing. Nano 10(1), 49 (2020)

    Google Scholar 

  167. X. Guan, G. Feng, Patterned superhydrophobic/superhydrophilic SERS sensors fabricated by femtosecond laser for precise positioning and ultra-sensitive detection. Chem. Phys. Lett. 783, 139065 (2021)

    Article  Google Scholar 

  168. L. Wu, H. Pu, L. Huang, D.-W. Sun, Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chem. 328, 127105–127105 (2020)

    Article  Google Scholar 

  169. C. Song, B. Yang, Y. Zhu, Y. Yang, L. Wang, Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosens. Bioelectron. 87, 59–65 (2017)

    Article  Google Scholar 

  170. K. Dana, C. Shende, H. Huang, S. Farquharson, Rapid analysis of cocaine in saliva by surface-enhanced Raman spectroscopy. J. Anal. Bioanal. Tech. 6(6), 1000289 (2015)

    Google Scholar 

  171. N.D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J.A. Guicheteau, S.D. Christesen, A.W. Fountain III, Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection. Anal. Chem. 88(21), 10513–10522 (2016)

    Article  Google Scholar 

  172. A.-M. Hada, M. Potara, S. Suarasan, A. Vulpoi, T. Nagy-Simon, E. Licarete, S. Astilean, Fabrication of gold-silver core-shell nanoparticles for performing as ultrabright SERS-nanotags inside human ovarian cancer cells. Nanotechnology 30(31), 315701 (2019)

    Article  Google Scholar 

  173. A. Kim, S.J. Barcelo, R.S. Williams, Z. Li, Melamine sensing in milk products by using surface enhanced Raman scattering. Anal. Chem. 84(21), 9303–9309 (2012)

    Article  Google Scholar 

  174. Y. Ou, L. Pei, K. Lai, Y. Huang, B.A. Rasco, X. Wang, Y. Fan, Rapid analysis of multiple sudan dyes in chili flakes using surface-enhanced Raman spectroscopy coupled with Au–Ag Core-Shell nanospheres. Food Anal. Methods 10(3), 565–574 (2017)

    Article  Google Scholar 

  175. D. Zhang, H. You, L. Yuan, R. Hao, T. Li, J. Fang, Hydrophobic slippery surface-based surface-enhanced Raman spectroscopy platform for ultrasensitive detection in food safety applications. Anal. Chem. 91(7), 4687–4695 (2019)

    Article  Google Scholar 

  176. L. Li, W.S. Chin, Rapid fabrication of a flexible and transparent Ag Nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 12(33), 37538–37548 (2020)

    Article  Google Scholar 

  177. G. Yang, X. Fang, Q. Jia, H. Gu, Y. Li, C. Han, L.-L. Qu, Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Microchim. Acta 187(5), 310 (2020)

    Article  Google Scholar 

  178. A.M. Dowgiallo, D.A. Guenther, Determination of the limit of detection of multiple pesticides utilizing gold nanoparticles and surface-enhanced Raman spectroscopy. J. Agric. Food Chem. 67(46), 12642–12651 (2019)

    Article  Google Scholar 

  179. J. Cheng, S. Wang, S. Zhang, P. Wang, J. Xie, C. Han, X.-O. Su, Rapid and sensitive determination of clenbuterol residues in animal urine by surface-enhanced Raman spectroscopy. Sensors Actuators B Chem. 279, 7–14 (2019)

    Article  Google Scholar 

  180. T. Yaseen, H. Pu, D.-W. Sun, Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci. Technol. 72, 162–174 (2018)

    Article  Google Scholar 

  181. C.-H. Ko, C.-C. Liu, K.-H. Chen, F. Sheu, L.-M. Fu, S.-J. Chen, Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem. 345, 128773–128773 (2021)

    Article  Google Scholar 

  182. M. Esteki, Z. Shahsavari, J. Simal-Gandara, Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Res. Int. 122, 303–317 (2019)

    Article  Google Scholar 

  183. J.N. Damico, The mass spectra of some organophosphorus pesticide compounds. J. AOAC Int. 49(5), 1027–1045 (1966)

    Article  Google Scholar 

  184. J.W. Wong, J. Wang, W. Chow, R. Carlson, Z. Jia, K. Zhang, D.G. Hayward, J.S. Chang, Perspectives on liquid chromatography-high-resolution mass spectrometry for pesticide screening in foods. J. Agric. Food Chem. 66(37), 9573–9581 (2018)

    Article  Google Scholar 

  185. C. Wang, R. Zhou, Y. Huang, L. Xie, Y. Ying, Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control 97, 100–104 (2019)

    Article  Google Scholar 

  186. H. Pu, W. Xiao, D.-W. Sun, SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 70, 114–126 (2017)

    Article  Google Scholar 

  187. S. Kumar, T. Fukuoka, R. Takahashi, M. Yoshida, Y. Utsumi, A. Yamaguchi, K. Namura, M. Suzuki, Highly stable and reproducible Au nanorod arrays for near-infrared optofluidic SERS sensor. Mater. Lett. 129106 (2020)

    Google Scholar 

  188. W. Zhengkun, S. Ning, Z. Yong, Z. Jie, AgNPs decorated volcano-like Ag arrays for ultra-sensitive Raman detection. Opt. Mater. Express 10(12), 3393–3402 (2020)

    Article  ADS  Google Scholar 

  189. M. Liszewska, B. Bartosewicz, B. Budner, B. Nasilowska, M. Szala, J.L. Weyher, I. Dziecielewski, Z. Mierczyk, B.J. Jankiewicz, Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems. Vib. Spectrosc. 100, 79–85 (2019)

    Article  Google Scholar 

  190. H. Wen, H. Wang, J. Hai, S. He, F. Chen, B. Wang, Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers. ACS Sustain. Chem. Eng. 7(5), 5200–5208 (2019)

    Article  Google Scholar 

  191. G. Eom, H. Kim, A. Hwang, H.-Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E.-K. Lim, J. Jeong, Y.-M. Huh, M.-K. Seo, T. Kang, B. Kim, Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: Application to gastric and breast cancer tissues diagnosis. Adv. Funct. Mater. 27(37), 1701832 (2017)

    Article  Google Scholar 

  192. Z. Zheng, L. Wu, L. Li, S. Zong, Z. Wang, Y. Cui, Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. Talanta 188, 507–515 (2018)

    Article  Google Scholar 

  193. Q. Wu, G. Chen, S. Qiu, S. Feng, D. Lin, A target-triggered and self-calibration aptasensor based on SERS for precise detection of a prostate cancer biomarker in human blood. Nanoscale 13(16), 7574–7582 (2021)

    Article  Google Scholar 

  194. A. Falamas, H. Rotaru, M. Hedesiu, Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis. Lasers Med. Sci. 35(6), 1393–1401 (2020)

    Article  Google Scholar 

  195. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, H. Zeng, Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 25(11), 2414–2419 (2010)

    Article  Google Scholar 

  196. Y. Huang, T. Xie, K. Zou, Y. Gu, G. Yang, F. Zhang, L.-L. Qu, S. Yang, Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Nanoscale 13(31), 13344–13352 (2021)

    Article  Google Scholar 

  197. H. Yang, Y. Xiang, X. Guo, Y. Wu, Y. Wen, H. Yang, Diazo-reaction-based SERS substrates for detection of nitrite in saliva. Sens. Actuators B Chem. 271, 118–121 (2018)

    Article  Google Scholar 

  198. T. Yang, X. Guo, Y. Wu, H. Wang, S. Fu, Y. Wen, H. Yang, Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 6(23), 20985–20993 (2014)

    Article  Google Scholar 

  199. S. Dong, Y. Wang, Z. Liu, W. Zhang, K. Yi, X. Zhang, X. Zhang, C. Jiang, S. Yang, F. Wang, X. Xiao, Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Appl. Mater. Interfaces 12(4), 5136–5146 (2020)

    Article  Google Scholar 

  200. D. Lin, Q. Wu, S. Qiu, G. Chen, S. Feng, R. Chen, H. Zeng, Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomedicine 22, 102100 (2019)

    Article  Google Scholar 

  201. V. Moisoiu, A. Stefancu, D. Gulei, R. Boitor, L. Magdo, L. Raduly, S. Pasca, P. Kubelac, N. Mehterov, V. Chis, M. Simon, M. Muresan, A.I. Irimie, M. Baciut, R. Stiufiuc, I.E. Pavel, P. Achimas-Cadariu, C. Ionescu, V. Lazar, V. Sarafian, I. Notingher, N. Leopold, I. Berindan-Neagoe, SERS-based differential diagnosis between multiple solid malignancies: Breast, colorectal, lung, ovarian and oral cancer. Int. J. Nanomedicine 14, 6165–6178 (2019)

    Article  Google Scholar 

  202. J.D. Spitzberg, A. Zrehen, X.F. van Kooten, A. Meller, Plasmonic-nanopore biosensors for superior single-molecule detection. Adv. Mater. 31(23), 1900422 (2019)

    Article  Google Scholar 

  203. L. Zhao, W. Gu, C. Zhang, X. Shi, Y. Xian, In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J. Colloid Interface Sci. 465, 279–285 (2016)

    Article  ADS  Google Scholar 

  204. D.I. Gittins, F. Caruso, Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40(16), 3001–3004 (2001)

    Article  Google Scholar 

  205. W. Wu, M. Hu, F.S. Ou, Z.Y. Li, R.S. Williams, Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21(25), 255502 (2010)

    Article  ADS  Google Scholar 

  206. S.W. Lee, K.S. Lee, J. Ahn, J.J. Lee, M.G. Kim, Y.B. Shin, Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5(2), 897–904 (2011)

    Article  Google Scholar 

  207. G.C. Shi, M.L. Wang, Y.Y. Zhu, X.Y. Yan, S.Y. Pan, A.Q. Zhang, Nanoflower-like Ag/AAO SERS platform with quasi-photonic crystal nanostructure for efficient detection of goat serum. Curr. Appl. Phys. 19(11), 1276–1285 (2019)

    Article  ADS  Google Scholar 

  208. L. Baia, M. Baia, J. Popp, S. Astilean, Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J. Phys. Chem. B 110(47), 23982–23986 (2006)

    Article  Google Scholar 

  209. X. Sun, L. Lin, Z. Li, Z. Zhang, J. Feng, Novel Ag-Cu substrates for surface-enhanced Raman scattering. Mater. Lett. 63(27), 2306–2308 (2009)

    Article  Google Scholar 

  210. H. Qiu, Z. Zhang, X. Huang, Y. Qu, Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: Effects of structural evolution and surface modification. ChemPhysChem 12(11), 2118–2123 (2011)

    Article  Google Scholar 

  211. B. Chandu, M.S.S. Bharati, S.V. Rao, AG nanoparticles coupled with AG nanostructures as efficient SERS platform for detection of 2,4-dinitrotoluene, in 2017 IEEE Workshop on Recent Advances in Photonics (WRAP), (IEEE, 2017), pp. 1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minlin Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X., Zhong, M. (2023). Laser Nanostructuring for SERS Applications. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_32

Download citation

Publish with us

Policies and ethics