Skip to main content

Subtractive 3D Laser Nanolithography of Crystals by Giant Wet-Chemical Etching Selectivity

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 239))

Abstract

Since the advent of ultrashort pulse lasers (τ p ~ 100 fs), one of the long-standing goals of laser scientists has been the opening of a new field of 3D micro- and nano-engineering of materials, thanks to the inherent capability of ultrashort pulses to modify the inner volume of any material. Achieving this goal has however proved to be extremely challenging for decades and has been hampered by many fundamental and technical difficulties. This scientific endeavour has pushed our understanding of a wide variety of issues related to how ultrashort pulses non-linearly interact with matter and how matter is transformed on different time and space scales. In this chapter, we focus on a new piece of this puzzle: how nanoconfined photomodified volumes inside matter can have greatly enhanced chemical reactivities, this creating a new type of 3D nanolithographic technique with the potential to revolutionize our current nanotechnology. Along this chapter, a review of the seminal works that have led to our current knowledge is given, and some of the current key technical limitations for nanostructuring will be described. A special emphasis will also be put on what is not yet well understood, the grey areas where future important discoveries may arise towards achieving the extreme nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, a fidelity that permits the device to operate as devised within small functional tolerances. Typically for a nanophotonic structure functioning in the visible or near-IR range, a standard deviation tolerance of around ~15 nm can be enough.

References

  1. T. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). https://doi.org/10.1038/187493a0

    Article  ADS  Google Scholar 

  2. H. D. Gilbert (ed.), Miniaturization (Wiley-VCH, 1961)

    Google Scholar 

  3. N. Taniguchi, On the basic concept of nano-technology, in Proceedings of the International Conference on Production Engineering, Part II, (Japan Society of Precision Engineering, Tokyo, 1974)

    Google Scholar 

  4. U. Keller, Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Springer, 2021)

    Book  Google Scholar 

  5. R. Thomson, C. Leburn, D. Reid (eds.), Ultrafast Nonlinear Optics (Springer, New York, 2013)

    Google Scholar 

  6. L.E. Hargrove, R.L. Fork, M.A. Pollack, Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5, 4 (1964)

    Article  ADS  Google Scholar 

  7. C.V. Shank, E.P. Ippen, Subpicosecond kilowatt pulses from a modelocked cw dye laser. Appl. Phys. Lett. 24, 373–375 (1974)

    Article  ADS  Google Scholar 

  8. R.L. Fork, B.I. Greene, C.V. Shank, Generation of optical pulses shorter than 0.1 ps by colliding pulse modelocking. Appl. Phys. Lett. 38, 617–619 (1981)

    Article  Google Scholar 

  9. P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J Opt Soc Am B 3, 125–132 (1986)

    Article  ADS  Google Scholar 

  10. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)

    Article  ADS  Google Scholar 

  11. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-modelocked Ti:Sapphire laser. Opt. Lett. 16, 42–44 (1991)

    Article  ADS  Google Scholar 

  12. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Solid state low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17, 505–507 (1992)

    Article  ADS  Google Scholar 

  13. H.A. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron 6(6), 1173–1185 (2000)

    Article  ADS  Google Scholar 

  14. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A.K. Kar, R. Osellame, Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13(2), 105–109 (2019)

    Article  ADS  Google Scholar 

  15. Y. Kobayashi, R. Ohnuki, S. Yoshioka, Discovery of I-WP minimal-surface-based photonic crystal in the scale of a longhorn beetle. J. R. Soc. Interface 18, 20210505 (2021)

    Article  Google Scholar 

  16. V. Saranathan, S. Narayanan, A. Sandy, E.R. Dufresne, R.O. Prum, Evolution of single gyroid photonic crystals in bird feathers. Proc. Natl. Acad. Sci. 118(23), e2101357118 (2021)

    Article  Google Scholar 

  17. J.H. Strickler, W.W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett. 16(22), 1780–1782 (1991)

    Article  ADS  Google Scholar 

  18. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997)

    Article  ADS  Google Scholar 

  19. M. Straub, M. Gu, Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt. Lett. 27(20), 1824–1826 (2002)

    Article  ADS  Google Scholar 

  20. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004)

    Article  ADS  Google Scholar 

  21. M. Hermatschweiler, A. Ledermann, G.A. Ozin, M. Wegener, G. von Freymann, Fabrication of silicon inverse woodpile photonic crystals. Adv. Funct. Mater. 17(14), 2273–2277 (2007)

    Article  Google Scholar 

  22. Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4(1), 1–7 (2013)

    Article  ADS  Google Scholar 

  23. V. Hahn, T. Messer, N.M. Bojanowski, et al., Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photonics 15, 932–938 (2021)

    Article  ADS  Google Scholar 

  24. A.J. Gross, K. Bertoldi, Additive manufacturing of nanostructures that are delicate, complex, and smaller than ever. Small 15(33), 1902370 (2019)

    Article  Google Scholar 

  25. L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014)

    Article  ADS  Google Scholar 

  26. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  27. J.R. Greer, Julia Greer answers questions about additive manufacturing. Nat. Commun. 11, Art-No (2020)

    Google Scholar 

  28. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Three-dimensional optical storage inside transparent materials. Opt. Lett. 21(24), 2023–2025 (1996)

    Article  ADS  Google Scholar 

  29. E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71(7), 882–884 (1997)

    Article  ADS  Google Scholar 

  30. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12(11), 1784 (2001)

    Article  ADS  Google Scholar 

  31. S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H.B. Sun, Y. Tokuda, M. Takahashi, J. Nishii, Application of femtosecond laser pulses for microfabrication of transparent media. Appl. Surf. Sci. 197, 705–709 (2002)

    Article  ADS  Google Scholar 

  32. E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys. Rev. B 73(21), 214101 (2006)

    Article  ADS  Google Scholar 

  33. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, U. Glatzel, Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl. Phys. A 76(3), 309–311 (2003)

    Article  ADS  Google Scholar 

  34. C.B. Schaffer, A.O. Jamison, E. Mazur, Morphology of femtosecond laser-induced structural changes in bulk transparent materials. Appl. Phys. Lett. 84(9), 1441–1443 (2004)

    Article  ADS  Google Scholar 

  35. G. Zhou, M. Gu, Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal. Appl. Phys. Lett. 87(24), 241107 (2005)

    Article  ADS  Google Scholar 

  36. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures. Phys. Rev. Lett. 96(16), 166101 (2006)

    Article  ADS  Google Scholar 

  37. G. Zhou, M. Gu, Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Opt. Lett. 31(18), 2783–2785 (2006)

    Article  ADS  Google Scholar 

  38. A. Rodenas, G. Zhou, D. Jaque, M. Gu, Rare-earth spontaneous emission control in three-dimensional lithium Niobate photonic crystals. Adv. Mater. 21(34), 3526–3530 (2009)

    Article  Google Scholar 

  39. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, T. Okada, Control over the crystalline state of sapphire. Adv. Mater. 18(11), 1361–1364 (2006)

    Article  Google Scholar 

  40. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001)

    Article  ADS  Google Scholar 

  41. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Article  ADS  Google Scholar 

  42. F. Becke, Tschermarks. Min. Petr. Mitteil. 11, 349 (1890)

    Article  Google Scholar 

  43. J.J. Thomson, Cathode rays. The Electrician 39, 104, also published in: In Proceedings of the Royal Institution, vol. 30, (1897), pp. 1–14

    Google Scholar 

  44. W.K. Röntgen, Über eine neue Art von Strahlen: vorläufige Mitteilung. Sitzungsber. Phys. Med. Gesell. (1895)

    Google Scholar 

  45. W. Friedrich, P. Knipping, M.V. Laue, Interferenz-Erscheinungen bei Röntgenstrahlen Sitzungsberichte der Mathematisch-Physikalischen Classe der Königlich-Bayerischen Akademie der Wissenschaften zu München (1912)

    Google Scholar 

  46. Y.P. Pshenichnov, Vyavlenie Tonkoi Structury Kristallov (Revelation of the Fine Structure of Crystals) (Metallurgia, Moscow, 1974)

    Google Scholar 

  47. R.B. Heimann, Auflösung von Kristallen – Theorie und Technische Anwendung (Springer, New York, 1975).; Russ. Transl., Rastvorenie Kristallov (Nedra, Leningrad, 1979)

    Book  Google Scholar 

  48. K. Sangwal, Etching of Crystals; Theory, Experiment, and Application, vol. 15 aus, der Reihe: Defects in solids, ed. by S. Amelinckx, J. Nihoul (North-Holland, Amsterdam, Oxford, New York, Tokyo, 1987)

    Google Scholar 

  49. N.J. Tighe, Jet thinning device for preparation of Al2O3 electron microscope specimens. Rev. Sci. Instrum. 35(4), 520–521 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Basterfield, The chemical polishing of yttrium iron garnet. J. Phys. D. Appl. Phys. 2(8), 1159 (1969)

    Article  ADS  Google Scholar 

  51. D.C. Miller, The etch rate of gadolinium gallium garnet in concentrated phosphoric acid of varying composition. J. Electrochem. Soc. 120(12), 1771 (1973)

    Article  ADS  Google Scholar 

  52. M. Gerber, T. Graf, Optimum parameters to etch Nd: YAG crystals with orthophosphoric acid H3PO4. Opt. Laser Technol. 33(7), 449–453 (2001)

    Article  ADS  Google Scholar 

  53. R. Feldman et al., Effect of hot acid etching on the mechanical strength of ground YAG laser elements. J. Phys. Chem. Solids 69(4), 839–846 (2008)

    Article  ADS  Google Scholar 

  54. S. Yang et al., Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Opt. Lett. 43(1), 62–65 (2018)

    Article  ADS  Google Scholar 

  55. C.A. Mack, Field Guide to Optical Lithography (SPIE Press, 2006)

    Book  Google Scholar 

  56. Ivo Utke, Stanislav Moshkalev, and Phillip Russell, (2012). Nanofabrication Using Focused Ion and Electron Beams Principles and Applications

    Google Scholar 

  57. R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9(8), 577–587 (2014)

    Article  ADS  Google Scholar 

  58. U. Okoroanyanwu, Molecular Theory of Lithography (SPIE Press, 2015)

    Book  Google Scholar 

  59. U. Okoroanyanwu, Chemistry and Lithography: The Chemical History of Lithography, 2nd edn. (SPIE Press, 2020)

    Book  Google Scholar 

  60. D. Teresa, J. María, Nanofabrication: Nanolithography Techniques and Their Applications (IOP Publishing, 2020)

    Google Scholar 

  61. W.A. Johnson, J.C. North, R. Wolfe, Differential etching of ion-implanted garnet. J. Appl. Phys. 44(10), 4753–4757 (1973)

    Article  ADS  Google Scholar 

  62. K. Mizuuchi, K. Yamamoto, T. Taniuchi, High-efficiency coupling of laser diodes in tapered proton-exchanged waveguides. Electron. Lett. 26, 1992–1994 (1990)

    Article  ADS  Google Scholar 

  63. M. Ishida et al., A new etching method for single-crystal Al2O3 film on Si using Si ion implantation. Sensors Actuators A Phys. 53(1–3), 340–344 (1996)

    Article  Google Scholar 

  64. C.J. McHargue et al., Etching of amorphous Al2O3 produced by ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 127, 596–598 (1997)

    Article  ADS  Google Scholar 

  65. P.J.T. Nunn, J. Olivares, L. Spadoni, P.D. Townsend, D.E. Hole, B.J. Luff, Ion beam enhanced chemical etching of Nd: YAG for optical waveguides. Nucl. Instrum. Methods Phys. Res., Sect. B 127, 507–511 (1997)

    Article  ADS  Google Scholar 

  66. A. Crunteanu, G. Jänchen, P. Hoffmann, M. Pollnau, C. Buchal, A. Petraru, D.P. Shepherd, Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etching. Appl. Phys. A 76(7), 1109–1112 (2003)

    Article  ADS  Google Scholar 

  67. A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, R.M. Osgood Jr., Origin of highly spatially selective etching in deeply implanted complex oxides. Appl. Phys. Lett. 93(18), 181906 (2008)

    Article  ADS  Google Scholar 

  68. S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, H. Misawa, Femtosecond laser assisted etching of quartz: Microstructuring from inside. Appl. Phys. A 84(1), 99–102 (2006)

    Article  ADS  Google Scholar 

  69. S. Matsuo, Y. Shichijo, T. Tomita, S. Hashimoto, Laser fabrication of ship-in-a-bottle microstructures in sapphire. JLMN 2, 114–116 (2007)

    Article  Google Scholar 

  70. S. Juodkazis, Y. Nishi, H. Misawa, Femtosecond laser-assisted formation of channels in sapphire using KOH solution. Phys. Status Solidi RRL 2(6), 275–277 (2008)

    Article  Google Scholar 

  71. D. Wortmann, J. Gottmann, N. Brandt, H. Horn-Solle, Micro-and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt. Express 16(3), 1517–1522 (2008)

    Article  ADS  Google Scholar 

  72. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, A. Tünnermann, Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser. Appl. Phys. B 97(2), 251–255 (2009)

    Article  ADS  Google Scholar 

  73. R. Moser, N. Ojha, M. Kunzer, U.T. Schwarz, Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching. Opt. Express 19(24), 24738–24745 (2011)

    Article  ADS  Google Scholar 

  74. S. Matsuo, K. Iwasa, T. Tomita, S. Hashimoto, T. Okada, Femtosecond laser-assisted etching of fluoride crystals. J. Laser Micro Nanoeng. 6(3), 245–248 (2011)

    Article  Google Scholar 

  75. S. Rajesh, Y. Bellouard, Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy. Opt. Express 18(20), 21490–21497 (2010)

    Article  ADS  Google Scholar 

  76. H.D. Nguyen, A. Ródenas, J.R.V. de Aldana, J. Martínez, F. Chen, M. Aguiló, et al., Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt. Express 24(7), 7777–7791 (2016)

    Article  ADS  Google Scholar 

  77. D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, A.K. Kar, Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl. Phys. Lett. 103(4), 041101 (2013)

    Article  ADS  Google Scholar 

  78. A. Rodenas, A. Benayas, J.R. MacDonald, J. Zhang, D.Y. Tang, D. Jaque, A.K. Kar, Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG. Opt. Lett. 36(17), 3395–3397 (2011)

    Article  ADS  Google Scholar 

  79. K. Hasse, C. Kränkel, T. Calmano, Selective etching of fs-laser written structures in Y3Al5O12, in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. CM_P_13

    Google Scholar 

  80. K. Hasse, G. Huber, C. Kränkel, Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG. Opt. Mater. Express 9, 3627–3637 (2019)

    Article  ADS  Google Scholar 

  81. J. Lv, B. Hong, Y. Tan, F. Chen, J.R.V. de Aldana, G.P. Wang, Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching. Photonics Res. 8(3), 257–262 (2020)

    Article  Google Scholar 

  82. K. Hasse, D. Kip, C. Kränkel, Influence of diluted acid mixtures on selective etching of MHz-and kHz-fs-laser inscribed structures in YAG. Opt. Mater. Express 11(5), 1546–1554 (2021)

    Article  ADS  Google Scholar 

  83. K. Hasse, D. Kip, C. Kränkel, Selective etching of 10 MHz repetition rate fs-laser inscribed tracks in YAG, in EPJ Web of Conferences, vol. 255, (EDP Sciences, 2021), p. 10003

    Google Scholar 

  84. N.A. Smith et al., Nd: YAG laser rod manufactured by femtosecond laser-induced chemical etching. Optical Materials Express 11(12), 3946–3953 (2021)

    Article  ADS  Google Scholar 

  85. S. Zhou et al., High-aspect-ratio ZnSe microstructure generated by spatially shaped femtosecond laser writing assisted with wet chemical etching. Opt. Laser Technol. 147, 107687 (2022)

    Article  Google Scholar 

  86. A.G. Okhrimchuk, A.D. Pryamikov, V.V. Likhov, D.S. Dobrovolskii, A.V. Shestakov, G.Y. Orlova, A.N. Romanov, Inscription of a waveguide in YAG: Nd crystal with a cladding composed by crystalline hollow channels. Opt. Mater. Express 12(4), 1609–1616 (2022)

    Article  ADS  Google Scholar 

  87. A. Ródenas, G. Zhou, D. Jaque, M. Gu, Direct laser writing of three-dimensional photonic structures in Nd: Yttrium aluminum garnet laser ceramics. Appl. Phys. Lett. 93(15), 151104 (2008)

    Article  ADS  Google Scholar 

  88. A. Crespi, R. Osellame, F. Bragheri, Femtosecond-laser-written optofluidics in alumino-borosilicate glass. Opt. Mater. X 4, 100042 (2019)

    Google Scholar 

Download references

Acknowledgements

A. R. is deeply thankful to D. Jaque, M. Gu, A. K. Kar, R. Osellame, G. Corrielli and P. Paie for their key contributions in the shaping of the work here described. Further acknowledgements are also given to S. Juodkazis for fruitful comments from 2009 on the wet etching of tracks in crystals written at 1 kHz repetition rates and to S. John for his comments on the study of photonic bandgaps in 3D nano-architected YAG crystals. A. R. also acknowledges support from “Fondo Social Europeo” (FSE), “Fondo Europeo de Desarrollo Regional” (FEDER), “Agencia Canaria de Investigación Innovación y Sociedad de la Información” (ACIISI), “Agencia Estatal de Investigación” (AEI/10.13039/501100011033, PID2019-107335RA-I00, RYC-2017-21618, 2021010102 and EIS-2021-10) and NANOtec, INTech, Cabildo de Tenerife.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airán Ródenas Seguí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ródenas Seguí, A. (2023). Subtractive 3D Laser Nanolithography of Crystals by Giant Wet-Chemical Etching Selectivity. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_20

Download citation

Publish with us

Policies and ethics