Skip to main content

Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins

  • Chapter
  • First Online:
The Networking of Chaperones by Co-Chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 101))

Abstract

Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams JL, Verghese J, Gibney PA, Morano KA (2014) Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 289:13155–13167

    Article  CAS  Google Scholar 

  • Ahner A, Whyte FM, Brodsky JL (2005) Distinct but overlapping functions of Hsp70, Hsp90, and an Hsp70 nucleotide exchange factor during protein biogenesis in yeast. Arch Biochem Biophys 435:32–41

    Article  CAS  Google Scholar 

  • Alberti S, Esser C, Höhfeld J (2003) BAG-1- a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    Article  Google Scholar 

  • Alberti S, Bohse K, Arndt V, Schmitz A, Höhfeld J (2004) The co-chaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15:4003–4010

    Article  CAS  Google Scholar 

  • Allu PK, Marada A, Boggula Y, Karri S, Krishnamoorthy T, Sepuri NB (2015) Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress. Mol Biol Cell 26(3):406–419. https://doi.org/10.1091/mbc.E14-09-1371

    Article  CAS  Google Scholar 

  • Andreasson C, Fiaux J, Rampelt H, Mayer MP, Bukau B (2008) Hsp110 is a nucleotide-activated exchange factor for Hsp70. J Biol Chem 283:8877–8884

    Article  CAS  Google Scholar 

  • Andreasson C, Rampelt H, Fiaux J, Druffel-Augustin S, Bukau B (2010) The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. J Biol Chem 285:12445–12453

    Article  CAS  Google Scholar 

  • Ang D, Georgopoulos C (1989) The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds. J Bacteriol 171:2748–2755

    Article  CAS  Google Scholar 

  • Antoku K, Maser RS, Scully WJ Jr, Delach SM, Johnson DE (2001) Isolation of Bcl-2 binding proteins that exhibit homology with BAG-1 and suppressor of death domains protein. Biochem Biophys Res Commun 286:1003–1010

    Article  CAS  Google Scholar 

  • Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311

    Article  CAS  Google Scholar 

  • Arakawa A, Handa N, Ohsawa N, Shida M, Kigawa T, Hayashi F, Shirouzu M, Yokoyama S (2010) The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure 18:309–319

    Article  CAS  Google Scholar 

  • Arakawa A, Handa N, Shirouzu M, Yokoyama S (2011) Biochemical and structural studies on the high affinity of Hsp70 for ADP. Protein Sci 20:1367–1379

    Article  CAS  Google Scholar 

  • Arndt V, Daniel C, Nastainczyk W, Alberti S, Höhfeld J (2005) BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16:5891–5900

    Article  CAS  Google Scholar 

  • Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20:143–148

    Article  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  Google Scholar 

  • Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    Article  CAS  Google Scholar 

  • Bimston D, Song J, Winchester D, Takayama S, Reed JC, Morimoto RI (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J 17:6871–6878

    Article  CAS  Google Scholar 

  • Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432

    Article  CAS  Google Scholar 

  • Briknarova K, Takayama S, Brive L, Havert ML, Knee DA, Velasco J, Homma S, Cabezas E, Stuart J, Hoyt DW, Satterthwait AC, Llinas M, Reed JC, Ely KR (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 8:349–352

    Article  CAS  Google Scholar 

  • Briknarova K, Takayama S, Homma S, Baker K, Cabezas E, Hoyt DW, Li Z, Satterthwait AC, Ely KR (2002) BAG4/SODD protein contains a short BAG domain. J Biol Chem 277:31172–31178

    Article  CAS  Google Scholar 

  • Brockmann C, Leitner D, Labudde D, Diehl A, Sievert V, Büssow K, Kühne R, Oschkinat H (2004) The solution structure of the SODD BAG domain reveals additional electrostatic interactions in the HSP70 complexes of SODD subfamily BAG domains. FEBS Lett 558:101–106

    Article  CAS  Google Scholar 

  • Brodsky JL, Bracher A (2007) Nucleotide exchange factors for Hsp70 molecular chaperones. In: Balch GL (ed) Networking of chaperones by co-chaperones. Molecular Biology Intelligence Unit. Landes Bioscience, Austin, TX, pp 1–12

    Google Scholar 

  • Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER (2020) Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 16(4):e1008700. https://doi.org/10.1371/journal.pgen.1008700

    Article  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  Google Scholar 

  • Carrettiero DC, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik KS (2009) The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci 29:2151–2161

    Article  CAS  Google Scholar 

  • Chang YW, Sun YJ, Wang C, Hsiao CD (2008) Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. J Biol Chem 283:15502–15511

    Article  CAS  Google Scholar 

  • Chung KS, Hoe KL, Kim KW, Yoo HS (1998) Isolation of a novel heat shock protein 70-like gene, pss1+ of Schizosaccharomyces pombe homologous to hsp110/SSE subfamily. Gene 210:143–150

    Article  CAS  Google Scholar 

  • Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557–47563

    Article  CAS  Google Scholar 

  • Colinet H, Hoffmann A (2010) Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma. Insect Biochem Mol Biol 40:425–428

    Article  CAS  Google Scholar 

  • Coulson M, Robert S, Saint R (2005) Drosophila starvin encodes a tissue-specific BAG-domain protein required for larval food uptake. Genetics 171:1799–1812

    Article  CAS  Google Scholar 

  • Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005) Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J Biol Chem 280:38673–38681

    Article  CAS  Google Scholar 

  • de Keyzer J, Steel GJ, Hale SJ, Humphries D, Stirling CJ (2009) Nucleotide binding by Lhs1p is essential for its nucleotide exchange activity and for function in vivo. J Biol Chem 284:31564–31571

    Article  Google Scholar 

  • De Snoo ML, Friesen EL, Zhang YT, Earnshaw R, Dorval G, Kapadia M, O'Hara DM, Agapova V, Chau H, Pellerito O, Tang MY, Wang X, Schmitt-Ulms G, Durcan TM, Fon EA, Kalia LV, Kalia SK (2019) Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death Dis 10(12):907. https://doi.org/10.1038/s41419-019-2132-x

    Article  CAS  Google Scholar 

  • Demand J, Alberti S, Patterson C, Höhfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577

    Article  CAS  Google Scholar 

  • Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA, Blanchette J, Rizzo K, Kohn E (2000) CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 19:4385–4395

    Article  CAS  Google Scholar 

  • Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?--A functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    Article  CAS  Google Scholar 

  • Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefevre L, Louvet C, Tournigand C, Lefevre JH, Parc Y, Tiret E, Flejou JF, Gaub MP, Garrido C, Duval A (2011) Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 17:1283–1289

    Article  CAS  Google Scholar 

  • Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801

    Article  CAS  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006a) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528

    Article  CAS  Google Scholar 

  • Dragovic Z, Shomura Y, Tzvetkov N, Hartl FU, Bracher A (2006b) Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biol Chem 387:1593–1600

    Article  CAS  Google Scholar 

  • Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5:276–290

    Article  CAS  Google Scholar 

  • Eroglu B, Moskophidis D, Mivechi NF (2010) Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol 30:4626–4643

    Article  CAS  Google Scholar 

  • Fan Q, Park KW, Du Z, Morano KA, Li L (2007) The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion. Genetics 177:1583–1593

    Article  CAS  Google Scholar 

  • Fang S, Li L, Cui B, Men S, Shen Y, Yang X (2013) Structural insight into plant programmed cell death mediated by BAG proteins in Arabidopsis thaliana. Acta Crystallogr D Biol Crystallogr 69:934–945

    Article  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623–628

    Article  CAS  Google Scholar 

  • Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M (2008) Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol 215:575–577

    Article  CAS  Google Scholar 

  • Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, Landry J (2010) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425:245–255

    Article  CAS  Google Scholar 

  • Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jette A, Elowe S, Landry J, Lavoie JN (2015) A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis. PLoS Genet 11(10):e1005582. https://doi.org/10.1371/journal.pgen.1005582

    Article  CAS  Google Scholar 

  • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901

    Article  CAS  Google Scholar 

  • Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda NB, Szlachcic A, Guilbride DL, Saibil HR, Mayer MP, Bukau B (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked alpha-synuclein amyloid fibrils. Mol Cell 59(5):781–793. https://doi.org/10.1016/j.molcel.2015.07.012

    Article  CAS  Google Scholar 

  • Garcia VM, Nillegoda NB, Bukau B, Morano KA (2017) Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Mol Biol Cell 28(15):2066–2075. https://doi.org/10.1091/mbc.E17-01-0070

    Article  CAS  Google Scholar 

  • Gässler CS, Wiederkehr T, Brehmer D, Bukau B, Mayer MP (2001) Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J Biol Chem 276:32538–32544

    Article  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  Google Scholar 

  • Goeckeler JL, Stephens A, Lee P, Caplan AJ, Brodsky JL (2002) Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell 13:2760–2770

    Article  CAS  Google Scholar 

  • Goeckeler JL, Petruso AP, Aguirre J, Clement CC, Chiosis G, Brodsky JL (2008) The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett 582:2393–2396

    Article  CAS  Google Scholar 

  • Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275

    Article  Google Scholar 

  • Gonzalez B, de Graaf A, Renaud M, Sahm H (2000) Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift. Yeast 16:483–497

    Article  CAS  Google Scholar 

  • Gowda NK, Kandasamy G, Froehlich MS, Dohmen RJ, Andreasson C (2013) Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A 110:5975–5980

    Article  CAS  Google Scholar 

  • Gowda NK, Kaimal JM, Masser AE, Kang W, Friedlander MR, Andreasson C (2016) Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast. Mol Biol Cell 27(8):1210–1219. https://doi.org/10.1091/mbc.E15-10-0697

    Article  CAS  Google Scholar 

  • Gowda NKC, Kaimal JM, Kityk R, Daniel C, Liebau J, Ohman M, Mayer MP, Andreasson C (2018) Nucleotide exchange factors Fes1 and HspBP1 mimic substrate to release misfolded proteins from Hsp70. Nat Struct Mol Biol 25(1):83–89. https://doi.org/10.1038/s41594-017-0008-2

    Article  CAS  Google Scholar 

  • Gozzi GJ, Gonzalez D, Boudesco C, Dias AMM, Gotthard G, Uyanik B, Dondaine L, Marcion G, Hermetet F, Denis C, Hardy L, Suzanne P, Douhard R, Jego G, Dubrez L, Demidov ON, Neiers F, Briand L, Sopkova-de Oliveira Santos J, Voisin-Chiret AS, Garrido C (2020) Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death Differ 27(1):117–129. https://doi.org/10.1038/s41418-019-0343-4

    Article  CAS  Google Scholar 

  • Guilbert SM, Lambert H, Rodrigue MA, Fuchs M, Landry J, Lavoie JN (2018) HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB J 32(7):3518–3535. https://doi.org/10.1096/fj.201700558RR

    Article  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    Article  CAS  Google Scholar 

  • Hale SJ, Lovell SC, de Keyzer J, Stirling CJ (2010) Interactions between Kar2p and its nucleotide exchange factors Sil1p and Lhs1p are mechanistically distinct. J Biol Chem 285:21600–21606

    Article  CAS  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  Google Scholar 

  • Held T, Barakat AZ, Mohamed BA, Paprotta I, Meinhardt A, Engel W, Adham IM (2011) Heat-shock protein HSPA4 is required for progression of spermatogenesis. Reproduction 142:133–144

    Article  CAS  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  Google Scholar 

  • Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S (2006) BAG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol 169:761–773

    Article  CAS  Google Scholar 

  • Horst M, Oppliger W, Rospert S, Schönfeld HJ, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849

    Article  CAS  Google Scholar 

  • Howes J, Shimizu Y, Feige MJ, Hendershot LM (2012) C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjogren syndrome. J Biol Chem 287:8552–8560

    Article  CAS  Google Scholar 

  • Hu C, Lin SY, Chi WT, Charng YY (2012) Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol 158:747–758

    Article  CAS  Google Scholar 

  • Huang HW, Yu C (2013) The NMR solution structure of the ubiquitin homology domain of Bcl-2-associated athanogene 1 (BAG-1-UBH) from Mus musculus. Biochem Biophys Res Commun 431:86–91

    Article  CAS  Google Scholar 

  • Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE (2018) Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 293(35):13682–13695. https://doi.org/10.1074/jbc.RA118.002607

    Article  CAS  Google Scholar 

  • Ichhaporia VP, Kim J, Kavdia K, Vogel P, Horner L, Frase S, Hendershot LM (2018) SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. Dis Models Mech 11(5):dmm033043. https://doi.org/10.1242/dmm.033043

    Article  CAS  Google Scholar 

  • Ikeda E, Yoshida S, Mitsuzawa H, Uno I, Toh-e A (1994) YGE1 is a yeast homologue of Escherichia coli grpE and is required for maintenance of mitochondrial functions. FEBS Lett 339:265–268

    Article  CAS  Google Scholar 

  • Ishihara K, Yamagishi N, Saito Y, Adachi H, Kobayashi Y, Sobue G, Ohtsuka K, Hatayama T (2003) Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278:25143–25150

    Article  CAS  Google Scholar 

  • Iwasaki M, Tanaka R, Hishiya A, Homma S, Reed JC, Takayama S (2010) BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion. Biochem Biophys Res Commun 400:413–418

    Article  CAS  Google Scholar 

  • Jacobs AT, Marnett LJ (2009) HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 284:9176–9183

    Article  CAS  Google Scholar 

  • Jiang Y, Woronicz JD, Liu W, Goeddel DV (1999) Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283:543–546

    Article  CAS  Google Scholar 

  • Jungkunz I, Link K, Vogel F, Voll LM, Sonnewald S, Sonnewald U (2011) AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J 66:983–995

    Article  CAS  Google Scholar 

  • Kabani M, Beckerich JM, Gaillardin C (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 20:6923–6934

    Article  CAS  Google Scholar 

  • Kabani M, Beckerich JM, Brodsky JL (2002a) Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 22:4677–4689

    Article  CAS  Google Scholar 

  • Kabani M, McLellan C, Raynes DA, Guerriero V, Brodsky JL (2002b) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531:339–342

    Article  CAS  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    Article  CAS  Google Scholar 

  • Kaimal JM, Kandasamy G, Gasser F, Andreasson C (2017) Coordinated Hsp110 and Hsp104 activities power protein disaggregation in Saccharomyces cerevisiae. Mol Cell Biol 37(11). https://doi.org/10.1128/MCB.00027-17

  • Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  Google Scholar 

  • Kandasamy G, Andreasson C (2018) Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast. J Cell Sci 131(6). https://doi.org/10.1242/jcs.210948

  • Kanelakis KC, Murphy PJ, Galigniana MD, Morishima Y, Takayama S, Reed JC, Toft DO, Pratt WB (2000) hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 39:14314–14321

    Article  CAS  Google Scholar 

  • Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J (2017) The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. Biochim Biophys Acta Mol Cell Res 1864(1):62–75. https://doi.org/10.1016/j.bbamcr.2016.10.007

    Article  CAS  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  Google Scholar 

  • Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S (2004) ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–1496

    Article  CAS  Google Scholar 

  • Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  CAS  Google Scholar 

  • Knapp RT, Wong MJ, Kollmannsberger LK, Gassen NC, Kretzschmar A, Zschocke J, Hafner K, Young JC, Rein T (2014) Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function. PLoS One 9:e85415

    Article  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  Google Scholar 

  • Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J Cell Biol 189:57–68

    Article  CAS  Google Scholar 

  • Kriegenburg F, Jakopec V, Poulsen EG, Nielsen SV, Roguev A, Krogan N, Gordon C, Fleig U, Hartmann-Petersen R (2014) A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet 10:e1004140

    Article  Google Scholar 

  • Kumar S, Masison DC (2019) Hsp70-nucleotide exchange factor (NEF) Fes1 has non-NEF roles in degradation of gluconeogenic enzymes and cell wall integrity. PLoS Genet 15(6):e1008219. https://doi.org/10.1371/journal.pgen.1008219

    Article  CAS  Google Scholar 

  • Kuo Y, Ren S, Lao U, Edgar BA, Wang T (2013) Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 4:e833

    Article  CAS  Google Scholar 

  • Kwon KR, Ahn JY, Kim MS, Jung JY, Lee JH, Oh IH (2010) Disruption of bis leads to the deterioration of the vascular niche for hematopoietic stem cells. Stem Cells 28:268–278

    Article  CAS  Google Scholar 

  • Laloraya S, Gambill BD, Craig EA (1994) A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci U S A 91:6481–6485

    Article  CAS  Google Scholar 

  • Laloraya S, Dekker PJ, Voos W, Craig EA, Pfanner N (1995) Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Mol Cell Biol 15:7098–7105

    Article  CAS  Google Scholar 

  • Lamark T, Johansen T (2012) Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012:736905. https://doi.org/10.1155/2012/736905

    Article  CAS  Google Scholar 

  • Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukau B (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A 96:5452–5457

    Article  CAS  Google Scholar 

  • Li Z, Hartl FU, Bracher A (2013) Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20:929–935

    Article  CAS  Google Scholar 

  • Li L, Xing Y, Chang D, Fang S, Cui B, Li Q, Wang X, Guo S, Yang X, Men S, Shen Y (2016) CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence. Sci Rep 6:31889. https://doi.org/10.1038/srep31889

    Article  CAS  Google Scholar 

  • Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR (2001) BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation. J Biol Chem 276:30127–30132

    Article  CAS  Google Scholar 

  • Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120

    Article  CAS  Google Scholar 

  • Liu XD, Morano KA, Thiele DJ (1999) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274:26654–26660

    Article  CAS  Google Scholar 

  • Liu Y, Gierasch LM, Bahar I (2010) Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. PLoS Comput Biol 6:e1000931. https://doi.org/10.1371/journal.pcbi.1000931

    Article  CAS  Google Scholar 

  • Liu L, Sun K, Zhang X, Tang Y, Xu D (2021) Advances in the role and mechanism of BAG3 in dilated cardiomyopathy. Heart Fail Rev 26(1):183–194. https://doi.org/10.1007/s10741-019-09899-7

    Article  Google Scholar 

  • Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA (2012) Hsp110 is required for spindle length control. J Cell Biol 198:623–636

    Article  CAS  Google Scholar 

  • Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA (2010) Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 21:1439–1448

    Article  CAS  Google Scholar 

  • Marada A, Allu PK, Murari A, PullaReddy B, Tammineni P, Thiriveedi VR, Danduprolu J, Sepuri NB (2013) Mge1, a nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70 function. Mol Biol Cell 24:692–703

    Article  CAS  Google Scholar 

  • Masison DC, Kirkland PA, Sharma D (2009) Influence of Hsp70s and their regulators on yeast prion propagation. Prion 3:65–73

    Article  CAS  Google Scholar 

  • Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 288:21399–21411

    Article  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  Google Scholar 

  • Mayer MP, Gierasch LM (2019) Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 294(6):2085–2097. https://doi.org/10.1074/jbc.REV118.002810

    Article  CAS  Google Scholar 

  • McClellan AJ, Scott MD, Frydman J (2005) Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 121:739–748

    Article  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  CAS  Google Scholar 

  • Meister-Broekema M, Freilich R, Jagadeesan C, Rauch JN, Bengoechea R, Motley WW, Kuiper EFE, Minoia M, Furtado GV, van Waarde M, Bird SJ, Rebelo A, Zuchner S, Pytel P, Scherer SS, Morelli FF, Carra S, Weihl CC, Bergink S, Gestwicki JE, Kampinga HH (2018) Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun 9(1):5342. https://doi.org/10.1038/s41467-018-07718-5

    Article  CAS  Google Scholar 

  • Miao B, Davis JE, Craig EA (1997) Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. J Mol Biol 265:541–552

    Article  CAS  Google Scholar 

  • Mock JY, Chartron JW, Zaslaver M, Xu Y, Ye Y, Clemons WM Jr (2015) Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc Natl Acad Sci U S A 112(1):106–111. https://doi.org/10.1073/pnas.1402745112

    Article  CAS  Google Scholar 

  • Mohamed BA, Barakat AZ, Held T, Elkenani M, Muhlfeld C, Manner J, Adham IM (2014) Respiratory distress and early neonatal lethality in hspa4l/hspa4 double-mutant mice. Am J Respir Cell Mol Biol 50:817–824

    Article  Google Scholar 

  • Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M (2006) Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J 25:4675–4685

    Article  CAS  Google Scholar 

  • Moro F, Muga A (2006) Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor. J Mol Biol 358:1367–1377

    Article  CAS  Google Scholar 

  • Mukai H, Kuno T, Tanaka H, Hirata D, Miyakawa T, Tanaka C (1993) Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family. Gene 132:57–66

    Article  CAS  Google Scholar 

  • Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310

    Article  Google Scholar 

  • Nachman E, Wentink AS, Madiona K, Bousset L, Katsinelos T, Allinson K, Kampinga H, McEwan WA, Jahn TR, Melki R, Mogk A, Bukau B, Nussbaum-Krammer C (2020) Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. J Biol Chem 295(28):9676–9690. https://doi.org/10.1074/jbc.RA120.013478

    Article  CAS  Google Scholar 

  • Nakamura J, Fujimoto M, Yasuda K, Takeda K, Akira S, Hatayama T, Takagi Y, Nozaki K, Hosokawa N, Nagata K (2008) Targeted disruption of Hsp110/105 gene protects against ischemic stress. Stroke 39:2853–2859

    Article  CAS  Google Scholar 

  • Nakamura A, Takumi K, Miki K (2010) Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system. J Mol Biol 396:1000–1011

    Article  CAS  Google Scholar 

  • Nicklow EE, Sevier CS (2020) Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation. J Biol Chem 295(2):552–569. https://doi.org/10.1074/jbc.RA119.010125

    Article  CAS  Google Scholar 

  • Nikolaidis N, Nei M (2004) Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Mol Biol Evol 21:498–505

    Article  CAS  Google Scholar 

  • Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524(7564):247–251. https://doi.org/10.1038/nature14884

    Article  CAS  Google Scholar 

  • Norton N, Li D, Rieder MJ, Siegfried JD, Rampersaud E, Zuchner S, Mangos S, Gonzalez-Quintana J, Wang L, McGee S, Reiser J, Martin E, Nickerson DA, Hershberger RE (2011) Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet 88(3):273–282. https://doi.org/10.1016/j.ajhg.2011.01.016

    Article  CAS  Google Scholar 

  • Oh HJ, Chen X, Subjeck JR (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272:31636–31640

    Article  CAS  Google Scholar 

  • Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem 274:15712–15718

    Article  CAS  Google Scholar 

  • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78

    Article  CAS  Google Scholar 

  • Page RC, Xu Z, Amick J, Nix JC, Misra S (2012) Crystallization and preliminary X-ray crystallographic analysis of the Bag2 amino-terminal domain from Mus musculus. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:647–651

    Article  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1998) Characterization of an 88-kDa heat shock protein of Neurospora crassa that interacts with Hsp30. J Biol Chem 273:11335–11341

    Article  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  CAS  Google Scholar 

  • Polier S, Hartl FU, Bracher A (2010) Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J Mol Biol 401:696–707

    Article  CAS  Google Scholar 

  • Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20:900–907

    Article  CAS  Google Scholar 

  • Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31:4221–4235

    Article  CAS  Google Scholar 

  • Rauch JN, Gestwicki JE (2014) Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J Biol Chem 289:1402–1414

    Article  CAS  Google Scholar 

  • Rauch JN, Zuiderweg ER, Gestwicki JE (2016) Non-canonical interactions between heat shock cognate protein 70 (Hsc70) and Bcl2-associated anthanogene (BAG) co-chaperones are important for client release. J Biol Chem 291(38):19848–19857. https://doi.org/10.1074/jbc.M116.742502

    Article  CAS  Google Scholar 

  • Rauch JN, Tse E, Freilich R, Mok SA, Makley LN, Southworth DR, Gestwicki JE (2017) BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. J Mol Biol 429(1):128–141. https://doi.org/10.1016/j.jmb.2016.11.013

    Article  CAS  Google Scholar 

  • Raviol H, Bukau B, Mayer MP (2006a) Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Lett 580:168–174

    Article  CAS  Google Scholar 

  • Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006b) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–2518

    Article  CAS  Google Scholar 

  • Raynes DA, Guerriero V (1998) Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem 273:32883–32888

    Article  CAS  Google Scholar 

  • Rogon C, Ulbricht A, Hesse M, Alberti S, Vijayaraj P, Best D, Adams IR, Magin TM, Fleischmann BK, Höhfeld J (2014) HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Mol Biol Cell 25(15):2260–2271. https://doi.org/10.1091/mbc.E14-02-0742

    Article  CAS  Google Scholar 

  • Rosam M, Krader D, Nickels C, Hochmair J, Back KC, Agam G, Barth A, Zeymer C, Hendrix J, Schneider M, Antes I, Reinstein J, Lamb DC, Buchner J (2018) Bap (Sil1) regulates the molecular chaperone BiP by coupling release of nucleotide and substrate. Nat Struct Mol Biol 25(1):90–100. https://doi.org/10.1038/s41594-017-0012-6

    Article  CAS  Google Scholar 

  • Rosati A, Graziano V, De Laurenzi V, Pascale M, Turco MC (2011) BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis 2:e141

    Article  CAS  Google Scholar 

  • Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  Google Scholar 

  • Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andreasson C, Lindquist S, Bukau B (2008) Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 3:e1763

    Article  Google Scholar 

  • Saxena A, Banasavadi-Siddegowda YK, Fan Y, Bhattacharya S, Roy G, Giovannucci DR, Frizzell RA, Wang X (2012) Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels. J Biol Chem 287:19158–19170

    Article  CAS  Google Scholar 

  • Schmidt S, Strub A, Rottgers K, Zufall N, Voos W (2001) The two mitochondrial heat shock proteins 70, Ssc1 and Ssq1, compete for the cochaperone Mge1. J Mol Biol 313:13–26

    Article  CAS  Google Scholar 

  • Schneider HC, Westermann B, Neupert W, Brunner M (1996) The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import. EMBO J 15:5796–5803

    Article  CAS  Google Scholar 

  • Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232–243

    Article  CAS  Google Scholar 

  • Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65(1):83–89. https://doi.org/10.1002/ana.21553

    Article  CAS  Google Scholar 

  • Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudnik-Schoneborn S, Blaschek A, Wolf NI, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendershot LM, Schroder JM, Lochmuller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314

    Article  CAS  Google Scholar 

  • Serlidaki D, van Waarde M, Rohland L, Wentink AS, Dekker SL, Kamphuis MJ, Boertien JM, Brunsting JF, Nillegoda NB, Bukau B, Mayer MP, Kampinga HH, Bergink S (2020) Functional diversity between HSP70 paralogs caused by variable interactions with specific co-chaperones. J Biol Chem 295(21):7301–7316. https://doi.org/10.1074/jbc.RA119.012449

    Article  CAS  Google Scholar 

  • Shaner L, Trott A, Goeckeler JL, Brodsky JL, Morano KA (2004) The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J Biol Chem 279:21992–22001

    Article  CAS  Google Scholar 

  • Shaner L, Wegele H, Buchner J, Morano KA (2005) The yeast HSP110 SSE1 functionally interacts with the HSP70 chaperones SSA and SSB. J Biol Chem 279:21992–22001

    Article  Google Scholar 

  • Shaner L, Sousa R, Morano KA (2006) Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45:15075–15084

    Article  CAS  Google Scholar 

  • Shaner L, Gibney PA, Morano KA (2008) The Hsp110 protein chaperone Sse1 is required for yeast cell wall integrity and morphogenesis. Curr Genet 54:1–11

    Article  CAS  Google Scholar 

  • Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22:205–220

    Article  CAS  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    CAS  Google Scholar 

  • Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6:e26319

    Article  CAS  Google Scholar 

  • Siegenthaler KD, Pareja KA, Wang J, Sevier CS (2017) An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP. eLife 6:e24141. https://doi.org/10.7554/eLife.24141

    Article  Google Scholar 

  • Sondermann H, Scheufler C, Schneider C, Höhfeld J, Hartl FU, Moarefi I (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  CAS  Google Scholar 

  • Sondermann H, Ho AK, Listenberger LL, Siegers K, Moarefi I, Wente SR, Hartl FU, Young JC (2002) Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae. J Biol Chem 277:33220–33227

    Article  CAS  Google Scholar 

  • Song J, Takeda M, Morimoto RI (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3:276–282

    Article  CAS  Google Scholar 

  • Srivastava S, Savanur MA, Sinha D, Birje A, Vigneshwaran R, Saha PP, D’Silva P (2017) Regulation of mitochondrial protein import by the nucleotide exchange factors GrpEL1 and GrpEL2 in human cells. J Biol Chem 292(44):18075–18090. https://doi.org/10.1074/jbc.M117.788463

    Article  CAS  Google Scholar 

  • Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    Article  CAS  Google Scholar 

  • Stevens KLP, Black AL, Wells KM, Yeo KYB, Steuart RFL, Stirling CJ, Schulz BL, Mousley CJ (2017) Diminished Ost3-dependent N-glycosylation of the BiP nucleotide exchange factor Sil1 is an adaptive response to reductive ER stress. Proc Natl Acad Sci U S A 114(47):12489–12494. https://doi.org/10.1073/pnas.1705641114

    Article  CAS  Google Scholar 

  • Storozhenko S, De Pauw P, Kushnir S, Van Montagu M, Inze D (1996) Identification of an Arabidopsis thaliana cDNA encoding a HSP70-related protein belonging to the HSP110/SSE1 subfamily. FEBS Lett 390:113–118

    Article  CAS  Google Scholar 

  • Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26:27–39

    Article  CAS  Google Scholar 

  • Symersky J, Zhang Y, Schormann N, Li S, Bunzel R, Pruett P, Luan CH, Luo M (2004) Structural genomics of Caenorhabditis elegans: structure of the BAG domain. Acta Crystallogr D Biol Crystallogr 60:1606–1610

    Article  CAS  Google Scholar 

  • Taguchi YV, Gorenberg EL, Nagy M, Thrasher D, Fenton WA, Volpicelli-Daley L, Horwich AL, Chandra SS (2019) Hsp110 mitigates alpha-synuclein pathology in vivo. Proc Natl Acad Sci U S A 116(48):24310–24316. https://doi.org/10.1073/pnas.1903268116

    Article  CAS  Google Scholar 

  • Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3:E237–E241

    Article  CAS  Google Scholar 

  • Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K, Knee D, Scudiero D, Tudor G, Miller GJ, Miyashita T, Yamada M, Reed JC (1998) Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res 58:3116–3131

    CAS  Google Scholar 

  • Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  CAS  Google Scholar 

  • Tewari R, Bailes E, Bunting KA, Coates JC (2010) Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–481

    Article  CAS  Google Scholar 

  • Tittelmeier J, Sandhof CA, Ries HM, Druffel-Augustin S, Mogk A, Bukau B, Nussbaum-Krammer C (2020) The HSP110/HSP70 disaggregation system generates spreading-competent toxic alpha-synuclein species. EMBO J 39(13):e103954. https://doi.org/10.15252/embj.2019103954

    Article  CAS  Google Scholar 

  • Tripathi A, Mandon EC, Gilmore R, Rapoport TA (2017) Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J Biol Chem 292(19):8007–8018. https://doi.org/10.1074/jbc.M116.761122

    Article  CAS  Google Scholar 

  • Trott A, Shaner L, Morano KA (2005) The molecular chaperone Sse1 and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae. Genetics 170:1009–1021

    Article  CAS  Google Scholar 

  • Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452

    Article  CAS  Google Scholar 

  • Tzankov S, Wong MJ, Shi K, Nassif C, Young JC (2008) Functional divergence between co-chaperones of Hsc70. J Biol Chem 283:27100–27109

    Article  CAS  Google Scholar 

  • Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, Behrends C, Fürst DO, Volkmer R, Hoffmann B, Kolanus W, Höhfeld J (2013) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 23:430–435

    Article  CAS  Google Scholar 

  • Ung PM, Thompson AD, Chang L, Gestwicki JE, Carlson HA (2013) Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK. PLoS Comput Biol 9:e1003279

    Article  Google Scholar 

  • Velten M, Gomez-Vrielynck N, Chaffotte A, Ladjimi MM (2002) Domain structure of the HSC70 cochaperone, HIP. J Biol Chem 277:259–266

    Article  CAS  Google Scholar 

  • Verghese J, Morano KA (2012) A lysine-rich region within fungal BAG domain-containing proteins mediates a novel association with ribosomes. Eukaryot Cell 11:1003–1011

    Article  CAS  Google Scholar 

  • Vogel M, Mayer MP, Bukau B (2006) Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem 281:38705–38711

    Article  CAS  Google Scholar 

  • Wada S, Hamada M, Satoh N (2006) A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. Cell Stress Chaperones 11:23–33

    Article  CAS  Google Scholar 

  • Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  Google Scholar 

  • Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR III, Perrin S, Feany MB, Horwich AL (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci U S A 106:1392–1397

    Article  CAS  Google Scholar 

  • Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP, Komiyama T, Li X, Morishima Y, Merry DE, Pratt WB, Osawa Y, Collins CA, Gestwicki JE, Lieberman AP (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118

    Article  CAS  Google Scholar 

  • Wentink AS, Nillegoda NB, Feufel J, Ubartaite G, Schneider CP, De Los RP, Hennig J, Barducci A, Bukau B (2020) Molecular dissection of amyloid disaggregation by human HSP70. Nature 587(7834):483–488. https://doi.org/10.1038/s41586-020-2904-6

    Article  CAS  Google Scholar 

  • Wilbanks SM, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251–2257

    Article  CAS  Google Scholar 

  • Williams B, Kabbage M, Britt R, Dickman MB (2010) AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response. Proc Natl Acad Sci U S A 107:6088–6093

    Article  CAS  Google Scholar 

  • Willmund F, Muhlhaus T, Wojciechowska M, Schroda M (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J Biol Chem 282:11317–11328

    Article  CAS  Google Scholar 

  • Willmund F, del Alamo M, Pechmann S, Chen T, Albanese V, Dammer EB, Peng J, Frydman J (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152:196–209

    Article  CAS  Google Scholar 

  • Wu CC, Naveen V, Chien CH, Chang YW, Hsiao CD (2012) Crystal structure of DnaK protein complexed with nucleotide exchange factor GrpE in DnaK chaperone system: insight into intermolecular communication. J Biol Chem 287:21461–21470

    Article  CAS  Google Scholar 

  • Xu Z, Page RC, Gomes MM, Kohli E, Nix JC, Herr AB, Patterson C, Misra S (2008) Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 15:1309–1317

    Article  CAS  Google Scholar 

  • Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q (2012) Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 287:5661–5672

    Article  CAS  Google Scholar 

  • Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y, Zhou Y (2013) 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126:4173–4186

    CAS  Google Scholar 

  • Yakubu UM, Morano KA (2021) Suppression of aggregate and amyloid formation by a novel intrinsically disordered region in metazoan Hsp110 chaperones. J Biol Chem 296:100567. https://doi.org/10.1016/j.jbc.2021.100567

    Article  CAS  Google Scholar 

  • Yam AY, Albanese V, Lin HT, Frydman J (2005) HSP110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 280:41252–41261

    Article  CAS  Google Scholar 

  • Yamashita H, Kawamata J, Okawa K, Kanki R, Nakamizo T, Hatayama T, Yamanaka K, Takahashi R, Shimohama S (2007) Heat-shock protein 105 interacts with and suppresses aggregation of mutant Cu/Zn superoxide dismutase: clues to a possible strategy for treating ALS. J Neurochem 102:1497–1505

    Article  CAS  Google Scholar 

  • Yan M, Li J, Sha B (2011) Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 438:447–455

    Article  CAS  Google Scholar 

  • Yan Y, Rato C, Rohland L, Preissler S, Ron D (2019) MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun 10(1):541. https://doi.org/10.1038/s41467-019-08450-4

    Article  CAS  Google Scholar 

  • Zahn M, Berthold N, Kieslich B, Knappe D, Hoffmann R, Sträter N (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol 425:2463–2479

    Article  CAS  Google Scholar 

  • Zhang JX, Wang C, Yang CY, Wang JY, Chen L, Bao XM, Zhao YX, Zhang H, Liu J (2010) The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant J 62:539–548

    Article  CAS  Google Scholar 

  • Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37(9):974–979. https://doi.org/10.1038/ng1620

    Article  CAS  Google Scholar 

  • Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome. Hum Mol Genet 19(1):25–35. https://doi.org/10.1093/hmg/ddp464

    Article  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  CAS  Google Scholar 

  • Zhuravleva A, Clerico EM, Gierasch LM (2012) An Interdomain Energetic Tug-of-War Creates the Allosterically Active State in Hsp70 Molecular Chaperones. Cell 151:1296–1307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bracher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bracher, A., Verghese, J. (2023). Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. In: Edkins, A.L., Blatch, G.L. (eds) The Networking of Chaperones by Co-Chaperones. Subcellular Biochemistry, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-031-14740-1_1

Download citation

Publish with us

Policies and ethics