Skip to main content

Hydrometallurgical Recovery of Zinc from By-Products and Waste Materials of Hot-Dip Galvanizing Process

  • Chapter
  • First Online:
Recycling Technologies for Secondary Zn-Pb Resources

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 396 Accesses

Abstract

Like other industrial processes, hot-dip galvanizing of steel generates some by-products and wastes. Secondary materials contain a relatively high percentage of zinc being valuable sources of the metal. Solid by-products like zinc ash, bottom dross, and top dross are currently sold to pyrometallurgical recycling plants, although zinc ash consisting of easy leachable components is suitable for hydrometallurgical treatment. In turn, flux skimming is deposited in landfills for hazardous wastes, but it could be leached for zinc recovery. Waste aqueous solutions from pretreatment steps, such as spent baths from pickling, stripping, and fluxing, or washing waters can be also regenerated by hydrometallurgical methods instead of going to landfills. This chapter presents the characteristics of main secondary raw materials originating from hot-dip galvanizing lines and reviews hydrometallurgical methods developed for their recycling or regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EPT:

Emulsion pertraction technology

Mt:

Million ton

NDSX:

Non-dispersive solvent extraction

ppm:

Part per million

SEM:

Scanning electron microscopy

S/L:

Solid to liquid ratio

ΔGfo:

Standard Gibbs free energy of formation (25 °C)

ΔGro:

Standard free energy change of reaction (25 °C)

References

  • Abbey CE, Jin W, Moats MS (2018) Manganese-chloride interactions on Pb–Ag anode behaviour in synthetic sulfuric acid electrolytes. In B. Davis et al. (eds) Extraction 2018, the minerals, metals & materials society, pp 1521–1533

    Google Scholar 

  • Abd El-Rahman MK, Abdel Kahlek MA, Werther J (2005) Physical treatment of zinc skimmed from the galvanized process using fluidized bed up-stream column. Eur J Miner Process Environ Prot 5(2):163–173

    Google Scholar 

  • AGA (2010) Performance of hot-dip galvanized steel products in the atmosphere, soil, water, concrete, and more. American Galvanizers Association

    Google Scholar 

  • Arguillarena A, Margallo M, Arruti-Fernández A, Pinedo J, Gómez P, Urtiaga A (2020) Scale-up of membrane-based zinc recovery from spent pickling acids of hot-dip galvanizing, Membranes 10:444

    Google Scholar 

  • Baik DS, Fray DJ (2001) Electrodeposition of zinc from high acid zinc chloride solutions. J Appl Electrochem 31:1141–1147

    Article  CAS  Google Scholar 

  • Barakat MA (2003) The pyrometallurgical processing of galvanizing zinc ash and flue dust. JOM 55(8):26–29

    Article  CAS  Google Scholar 

  • Barakat MA, Mahmoud MHH, Shehata M (2006) Hydrometallurgical recovery of zinc from a fine blend of galvanization processes. Sep Sci Technol 41:1757–1772

    Article  CAS  Google Scholar 

  • Bright MA, Deem NJ, Fryatt J (2007) The advantages of recycling metallic zinc from the processing wastes of industrial molten zinc applications. Light Metals 2007. Miner Metals Mater Soc

    Google Scholar 

  • Carrillo-Abad J, Garcia-Gabaldon M, Perez-Herranz V (2014) Study of the zinc recovery from spent pickling baths by means of an electrochemical membrane reactor using a cation-exchange membrane under galvanostatic control. Sep Pur Technol 132:479–486

    Article  CAS  Google Scholar 

  • Chen TT, Cabri LJ (1986) Mineralogical overview of iron control in hydrometallurgical processing. In: Dutrizac JE, Monhemius AJ (eds) Iron control in hydrometallurgy. Ellis Horwood Ltd., Chichester, pp 19–55

    Google Scholar 

  • Cierpiszewski R, Miesiąc I, Regel-Rosocka M, Sastre AM, Szymanowski J (2002) Removal of zinc(II) from spent hydrochloric acid solutions from zinc hot galvanizing plants. Ind Eng Chem Res 41:598–603

    Article  CAS  Google Scholar 

  • Csicsovszki G, Kékesi T, Török TI (2005) Selective recovery of Zn and Fe from spent pickling solutions by the combination of anion exchange and membrane electrowinning techniques. Hydrometallurgy 77:19–28

    Article  CAS  Google Scholar 

  • Dakhili N, Razavizadeh H, Salehi MT, Seyedein SH (2011) Recovery of zinc from the final slag of steel’s galvanizing process. Adv Mater Res 264–265:592–596

    Article  Google Scholar 

  • Dvořák P, Jandová J (2005) Hydrometallurgical recovery of zinc from hot-dip galvanizing ash. Hydrometallurgy 77:29–33

    Article  Google Scholar 

  • EC (2010) Guidance on classification of waste according to EWC-Stat categories. Supplement to the manual for the implementation of the regulation (EC) No 2150/2002 on Waste Statistics. Commission of the European Communities Eurostat

    Google Scholar 

  • Fleitlikh IY, Pashkov GL, Grigorieva NA, Logutenko OA, Kopanyov AM (2014) Zinc extraction from sulfate–chloride solutions with mixtures of trialkyl amine and organic acids. Hydrometallurgy 149:110–117

    Google Scholar 

  • Ghare NY, Wani KS, Patil VS (2013) A review on methods of recovery of acid(s) from spent pickle liquor of steel industry. J Environ Sci Eng 55(2):253–266

    CAS  Google Scholar 

  • Gordon RB, Graedel TE, Bertram M, Fuse K, Lifset R, Rechberger H, Spatari S (2003) The characterization of technological zinc cycles. Resour Conserv Recycl 39:107–135

    Article  Google Scholar 

  • Gostu S, Mishra D, Sahu KK, Agrawal A (2014) Precipitation and characterization of zinc borates from hydrometallurgical processing of zinc ash. Mater Lett 134:198–201

    Article  CAS  Google Scholar 

  • Grenville HW (1929) Recovery of zinc, U.S. Patent 1,719,056

    Google Scholar 

  • Guo H, Lu J, Dreisinger D, Kuha LL, Steyl J, Smith J (2010) Zinc electrowinning of from acidic chloride solutions. In: Lead-Zinc 2010 symposium, Vancouver, Canada, pp 685–699

    Google Scholar 

  • Güresin N, Topkaya YA (1998) Dechlorination of zinc dross. Hydrometallurgy 49:179–187

    Article  Google Scholar 

  • Hagemann S (2012) Entwicklung eines thermodynamischen Modells für Zink, Blei und Cadmium in salinaren Lösungen, GRS-219, 283 (in German)

    Google Scholar 

  • Haines AK, Tunley TH, Te Riele WAM, Cloete FLD, Sampson TD, Econ B (1973) The recovery of zinc from pickle liquors by ion exchange. J South Afr Inst Min Metall 74(4):149–157

    Google Scholar 

  • Hewaidy IF, Sabr HO, Nassi EH (1979) Characteristics of electrolytic zinc powder produced from zinc dross. Powder Technol 24(2):245–250

    Article  CAS  Google Scholar 

  • Ismael MRC, Carvalho JMR (2003) Iron recovery from sulfate leach liquors in zinc hydrometallurgy. Min Eng 16:31–39

    Article  CAS  Google Scholar 

  • Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Res Conserv Recycl 33:1–22

    Article  Google Scholar 

  • Jha MK, Kumar V, Singh RJ (2002) Solvent extraction of zinc from chloride solutions. Solv Extr Ion Exch 20(3):389–405

    Article  CAS  Google Scholar 

  • Kelsall GH, Guerra E, Li G, Bestetti M (2000) Effects of manganese(II) and chloride ions in zinc electrowinning reactors. In: Woods R, Doyle FM (eds) Electrochemistry in mineral and metal processing V, proceedings of the international symposium 2000–14, Electrochemical Society, pp 350–361

    Google Scholar 

  • Kerney U (1994) Treatment of spent pickling acids from hot-dip galvanizing. Res Conserv Recycl 10:145–151

    Article  Google Scholar 

  • Kołodziej B (1996) Elektrowydzielanie metali—procesy hydrometalurgiczne. Physicochem Probl Miner 30:233–247 (in Polish)

    Google Scholar 

  • Kong G, White R (2010) Toward cleaner production of hot-dip galvanizing in China. J Clean Prod 18(10–11):1092–1099

    Article  CAS  Google Scholar 

  • Kuklik V, Kudlaček J (2016) Hot-dip galvanizing of steel structures. Elsevier, Oxford-Cambridge

    Google Scholar 

  • Laso J, García V, Bringas E, Urtiaga A, Ortiz I (2015) Selective recovery of zinc over iron from spent pickling wastes by different membrane-based solvent extraction process configurations. Ind Eng Chem Res 54:3218–3224

    Article  CAS  Google Scholar 

  • Lawson GJ (1975) Solvent extraction of metals from chloride solutions. J Appl Chem Biotechnol 25:949–957

    Article  CAS  Google Scholar 

  • Luo G, Wang Y, Zeng J, He H, Yan J, He C, Zhang R, Li S (2014) Study on the formation of bottom dross in hot-dip Zn-0.1%Ni alloy. Adv Mater Res 881–883:1572–1575

    Article  Google Scholar 

  • Lupa L, Negrea P, Iovi A, Ciopec M, Mosoarca G (2006) Zinc recover from zinc ash by extraction with clorhidric acid solutions. Chem Bull Politeh Univ (Timisoara) 51(1–2):71–74

    Google Scholar 

  • Mackinnon DJ, Brannen JM (1991) Effect of manganese, magnesium, sodium and potassium sulphates on zinc electrowinning from synthetic acid sulphate electrolytes. Hydrometallurgy 27:99–111

    Article  CAS  Google Scholar 

  • Mackinnon DJ, Brannen JM, Morrison RM (1982) Zinc electrowinning from aqueous chloride electrolyte. J Appl Electrochem 12:39–53

    Article  Google Scholar 

  • Marañón E, Fernández Y, Súarez FJ, Alonso FJ, Sastre H (2000) Treatment of zinc pickling baths by means of anionic resins. Ind Eng Chem Res 39:3370–3376

    Article  Google Scholar 

  • Marder AR (2000) The metallurgy of zinc-coated steel. Prog Mater Sci 45:191–271

    Article  CAS  Google Scholar 

  • Mass P, Peissker P (2011) Handbook of hot-dip galvanization. Wiley, Weinheim

    Book  Google Scholar 

  • Miesiąc I (2003) Utilization methods of spent hydrochloric acid from hot-dip zinc galvanizing. Pol J Chem Technol 5(4):34–36

    Google Scholar 

  • Muresan L, Maurin G, Oniciu L, Gaga D (1996) Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometall 43:345–354

    Article  CAS  Google Scholar 

  • Muthu N, Faieza AA, Rosnah RBM (2013) Minimization of spent acid waste from the galvanizing plant in Malaysia. Glob J Res Eng E 13(6):15–24

    Google Scholar 

  • Najiba, S., 2010. Recovery of zinc from the ash of galvanizing plant by hydrometallurgical route, PhD. Thesis, Bangladesh University of Engineering and Technology.

    Google Scholar 

  • Nicol M, Akilan C, Tjandrawan V, Gonzalez JA (2017) The effects of halides in the electrowinning of zinc. I. Oxidation of Chloride on Lead-Silver Anodes. Hydrometallurgy 173:125–133

    Article  CAS  Google Scholar 

  • Nirdosh I, Kalia RK, Muthuswami SV (1988) Bench-scale investigations on the electrolytic recovery of zinc powder from Galvanizer’s ash. Hydrometallurgy 20(2):203–217

    Article  CAS  Google Scholar 

  • Parus A, Olszanowski A, Wieszczycka K (2011) Solvent extraction of iron(III) from chloride solutions in the presence of copper(II) and zinc(II) using hydrophobic pyridyl ketoximes. Sep Sci Technol 46(1):87–93

    Article  CAS  Google Scholar 

  • Pirošková J, Trpčevská J, Laubertová M, Holková B, Sminčaková E (2014) Acid leaching of top dross generated during wet batch hot-dip galvanizing process. Metall 7–8:248–252

    Google Scholar 

  • Pirošková J, Trpčevská J, Laubertová M, Sminčaková E (2015) The influence of hydrochloric acid on the zinc extraction from flux skimming. Acta Metall Slovac 21(2):127–134

    Article  Google Scholar 

  • Pirošková J, Trpčevská J, Orač D, Laubertová M, Horvathová H, Holková B (2018) Production of zinc oxide from hazardous waste—sal ammoniac skimming. J Min Metall Sect B-Metall 54(3), B, 377–384

    Google Scholar 

  • Pirošková J, Trpčevská J, Sminčaková E, Holková B (2016) Kinetic study of zinc leaching from flux skimming. Metall 1–2:514–518

    Google Scholar 

  • Rabah MA, El-Sayed AS (1995) Recovery of zinc and some of its valuable salts from secondary resources and wastes. Hydrometallurgy 37:23–32

    Article  CAS  Google Scholar 

  • Rahman MM, Qadir MR, Neger AJMT, Kurny ASW (2013) Studies on the preparation of zinc oxide from galvanizing plant waste. Am J Mater Eng Technol 1(4):59–64

    Google Scholar 

  • Ramachandran P, Nandakumar V, Sathaiyan N (2004) Electrolytic recovery of zinc from zinc ash using a catalytic anode. J Chem Technol Biotechnol 79:578–583

    Article  CAS  Google Scholar 

  • Regel-Rosocka M (2010) A review on methods of regeneration of spent pickling solutions from steel processing. J Hazard Mater 177:57–69

    Article  CAS  Google Scholar 

  • Regel-Rosocka M, Cieszyńska A, Wiśniewski M (2007) Methods of regeneration of spent pickling solutions from steel treatment plants. Pol J Chem Technol 9(2):42–45

    Article  CAS  Google Scholar 

  • Rudnik E (2019a) Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinning. Hydrometallurgy 188:256–263

    Article  CAS  Google Scholar 

  • Rudnik E (2019b) Investigation of industrial waste materials for hydrometallurgical recovery of zinc. Min Eng 139:105871

    Article  CAS  Google Scholar 

  • Rudnik E (2020) Hydrometallurgical recovery of zinc from industrial hot dipping top ash. Trans Nonferrous Met Soc China 30:2239–2255

    Article  CAS  Google Scholar 

  • Rudnik E, Włoch G, Szatan L (2018a) Hydrometallurgical treatment of zinc ash from hot-dip galvanizing process. Min Metall Process 35(2):69–76

    Google Scholar 

  • Rudnik E, Włoch G, Szatan L (2018b) Preliminary investigation on leaching behaviour of zinc ash. Arch Metall Mater 63(2):801–807

    CAS  Google Scholar 

  • Şahin FC, Derin B, Yücel O (2000) Chloride removal from zinc ash. Scand J Metall 29:224–230

    Article  Google Scholar 

  • Sahu KK, Agarwal A, Pandey BD (2004) Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources. Waste Manage Res 22:248–254

    Article  CAS  Google Scholar 

  • Saramak D, Krawczykowski D, Gawenda T (2018) Investigations of zinc recovery from metallurgical waste. IOP conference series: Mater. Sci. Eng. 427:012017

    Google Scholar 

  • Schmitz D, Friedrich B (2007) In-house recycling of hard zinc and zinc ash by liquid metal centrifugation. In: Proceedings of EMC 2007, 1–20 pp

    Google Scholar 

  • Sinha S, Choudhari R, Mishra D, Shekhar S, Agrawal A, Sahu KK (2020) Valorisation of waste galvanizing dross: emphasis on the recovery of zinc with zero effluent strategy. J Environ Manage 256:109985

    Article  CAS  Google Scholar 

  • Stokes F (1990) Chemical reactions in fluxes for hot-dip galvanizing. Anti-Corr Met Mater 37(4):12–14

    Article  Google Scholar 

  • Sminčaková E, Trpčevská J, Pirošková J (2017) Kinetic aspects of leaching zinc from waste galvanizing zinc by using hydrochloric acid solutions. JOM 69(10):1869–1875

    Article  Google Scholar 

  • Stocks C, Wood J, Guy S (2005) Minimisation and recycling of spent acid wastes from galvanizing plants. Res Conserv Recycl 44:153–166

    Article  Google Scholar 

  • Subbaiah T, Mallick SC, Bhattacharya IN, Anand S, Das RP (2004) Preparation and characterisation of ferrite grade zinc oxide from zinc ash. Eur J Min Process Environ Prot 4(3):236–242

    Google Scholar 

  • Takácová Z, Hluchánová B, Trpcevská J (2010) Leaching of zinc from zinc ash originating from hot dip galvanizing. Metall 64(12):517–519

    Google Scholar 

  • Tang B, Su W, Wang J, Fu F, Yu G, Zhang J (2012) Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: mechanism and evaluation method. J Environ Manage 98:147–154

    Article  CAS  Google Scholar 

  • Tjandrawan V, Nicol MJ (2013) Electrochemical oxidation of iron(II) ions on lead alloy anodes. Hydrometallurgy 131–132:81–88

    Article  Google Scholar 

  • Trpčevská J, Hlucháňova B, Vindt T, Zorawski W, Jakubéczyová D (2010) Characterization of the bottom dross formed during batch hot-dip galvanizing and its refining. Acta Metall Slovac 16(3):151–156

    Google Scholar 

  • Trpčevská J, Hoĺková B, Briančin J, Korálová K, Pirošková J (2015) The pyrometallurgical recovery of zinc from the coarse-grained fraction of zinc ash by centrifugal force. Int J Min Process 143:25–33

    Article  Google Scholar 

  • Trpčevská J, Rudnik E, Holková B, Laubertová M (2018) Leaching of zinc ash with hydrochloric acid solutions. Pol J Environ Stud 27(4):1765–1771

    Article  Google Scholar 

  • Wang Z, Gao J, Shi A, Meng L, Guo Z (2018) Recovery of zinc from galvanizing dross by a method of super-gravity separation. J All Comp 735:1997–2008

    Article  CAS  Google Scholar 

  • Wojciechowska A, Wieszczycka K, Wojciechowska I, Olszanowski A (2017) Lead(II) extraction from aqueous solutions by pyridine extractants. Sep Pur Technol 177:239–248

    Article  CAS  Google Scholar 

  • Worrell E, Reuter MA (eds) (2014) Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists. Elsevier

    Google Scholar 

  • Vourlias G, Pistofidis N, Stergioudis G, Polychroniadis EK (2005) A negative effect of the insoluble particles of dross on the quality of the galvanized coatings. Solid State Sci 7(4):465–474

    Article  CAS  Google Scholar 

  • Vourialis G, Pistofidis N, Pavlidou E, Stergioudis G, Polychroniadis EK (2007) Study of the structure of hot-dip galvanizing byproducts. J Optoel Adv Mater 9(9):2937–2942

    Google Scholar 

  • Xiao H-F, Chen Q, Cheng H, Min L-X, Qin W-M, Chen B-S, Xiao D, Zhang W-M (2017) Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis. J Membr Sci 537:111–118

    Article  CAS  Google Scholar 

  • Zhang W-S, Cheng C-Y (2007) Manganese metallurgy review. Part III: Manganese Control in Zinc and Copper Electrolytes. Hydrometallurgy 89:178–188

    Article  CAS  Google Scholar 

  • Zhang QB, Hua Y (2009) Effect of Mn2+ ions on the electrodeposition of zinc from acidic sulphate solutions. Hydrometallurgy 99(3–4):249–254

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang C (2017) Pollution control and resource reuse for alkaline hydrometallurgy of amphoteric metal hazardous wastes. Springer International Publishing AG, pp 13–38

    Google Scholar 

  • Zueva SB, Ferella F, Innocenzi V, De Michelis I, Corradini V, Ippolito NM, Vegliò F (2021) Recovery of zinc from the treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustainab 13:407

    Article  CAS  Google Scholar 

Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Rudnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudnik, E. (2023). Hydrometallurgical Recovery of Zinc from By-Products and Waste Materials of Hot-Dip Galvanizing Process. In: Kaya, M. (eds) Recycling Technologies for Secondary Zn-Pb Resources. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-14685-5_6

Download citation

Publish with us

Policies and ethics