Skip to main content

Effect of Processing on the Nutrients and Anti-nutrients Composition of Faba-Bean

  • Chapter
  • First Online:
Faba Bean: Chemistry, Properties and Functionality

Abstract

Faba bean is an excellent source of protein, carbohydrates, fiber, and vitamins which could serve as a vital nutrient source in ensuring food security. The bean has the potential to be used as a vegetable protein source in different products thus, helping to meet the ever-changing consumer dietary need. The nutrient composition of Faba bean may depend on variety, however, the bioavailability of the nutrients in the bean is reduced by the presence of inherent antinutritional factors such as trypsin inhibitors, hemagglutinin, phytic acid, vicine, convicine and tannins. For the transformation of the bean into food, processing methods including soaking, dehulling, ordinary cooking, microwave cooking, irradiation, extrusion, and autoclaving are used. This chapter discusses the effect of different processing methods on the nutrient and antinutrient composition of Faba bean. A good understanding of the impact of processing on the nutrients and anti-nutrients could improve the use of Faba bean for human consumption to achieve desirable health benefits. Future studies on the optimization of these processing conditions to maximize the reduction in anti-nutrients and minimize nutrient loss are required, to further improve the utilization of this leguminous crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd, E.-H. E., & Habiba, R. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Science and Technology, 36(3), 285–293.

    Article  Google Scholar 

  • Acton, J., Breyer, L., & Satterlee, L. (1982). Effect of dietary fiber constituents on the in vitro digestibility of casein. Journal of Food Science, 47(2), 556–560.

    Article  CAS  Google Scholar 

  • Adamidou, S., Nengas, I., Grigorakis, K., Nikolopoulou, D., & Jauncey, K. (2011). Chemical composition and antinutritional factors of field peas (Pisum sativum), chickpeas (Cicer arietinum), and faba beans (Vicia faba) as affected by extrusion preconditioning and drying temperatures. Cereal Chemistry, 88(1), 80–86.

    Article  CAS  Google Scholar 

  • Al-Bachir, M., & Lahham, G. (2002). The effect of gamma irradiation on the microbial load, mineral concentration and sensory characteristics of liquorice (Glycyrrhiza glabra L). Journal of the Science of Food and Agriculture, 83(1), 70–75.

    Article  Google Scholar 

  • Al-Nouri, F., & Siddiqi, A. (1982). Biochemical evaluation of twelve broad bean cultivars. Canadian Institute of Food Science and Technology Journal, 15(1), 37–40.

    Article  CAS  Google Scholar 

  • Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68(2), 159–165.

    Article  CAS  Google Scholar 

  • Anderson, J., Idowu, A., Singh, U., & Singh, B. (1994). Physicochemical characteristics of flours of faba bean as influenced by processing methods. Plant Foods for Human Nutrition, 45(4), 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Arribas, C., Cabellos, B., Cuadrado, C., Guillamon, E., & Pedrosa, M. M. (2019). Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT-Food Science and Technology, 111, 387–393.

    Article  CAS  Google Scholar 

  • Bhattacharjee, P., Singhal, R. S., Gholap, A. S., Variyar, P. S., & Bongirwar, D. R. (2003). Compositional profiles of γ-irradiated cashew nuts. Food Chemistry, 80(2), 159–163.

    Article  CAS  Google Scholar 

  • Boudjou, S., Oomah, B. D., Zaidi, F., & Hosseinian, F. (2013). Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chemistry, 138(2–3), 1543–1550.

    Article  CAS  PubMed  Google Scholar 

  • Brigide, P., & Canniatti-Brazaca, S. (2006). Antinutrients and “in vitro” availability of iron in irradiated common beans (Phaseolus vulgaris). Food Chemistry, 98(1), 85–89.

    Article  CAS  Google Scholar 

  • Cardador-Martínez, A., Maya-Ocaña, K., Ortiz-Moreno, A., Herrera-Cabrera, B. E., Dávila-Ortiz, G., Múzquiz, M., Martín-Pedrosa, M., Burbano, C., Cuadrado, C., & Jiménez-Martínez, C. (2012). Effect of roasting and boiling on the content of vicine, convicine and L-3, 4-dihydroxyphenylalanine in Vicia faba L. Journal of Food Quality, 35(6), 419–428.

    Article  Google Scholar 

  • Chinma, C. E., Abu, J. O., Asikwe, B. N., Sunday, T., & Adebo, O. A. (2021). Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT-Food Science and Technology, 140, 110749.

    Article  CAS  Google Scholar 

  • Coda, R., Melama, L., Rizzello, C. G., Curiel, J. A., Sibakov, J., Holopainen, U., Pulkkinen, M., & Sozer, N. (2015). Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. International Journal of Food Microbiology, 193, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Dhull, S. B., Kidwai, M. K., Noor, R., Chawla, P., & Rose, P. K. (2021). A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Science, e129.

    Google Scholar 

  • Dogan, H., Gueven, A., & Hicsasmaz, Z. (2013). Extrusion cooking of lentil flour (Lens culinaris–Red)–corn starch–corn oil mixtures. International Journal of Food Properties, 16(2), 341–358.

    Article  CAS  Google Scholar 

  • Drulyte, D., & Orlien, V. (2019). The effect of processing on digestion of legume proteins. Foods, 8(6), 224.

    Article  CAS  PubMed Central  Google Scholar 

  • Ene-Obong, H., & Obizoba, I. (1996). Effect of domestic processing on the cooking time, nutrients, antinutrients andin vitro Protein digestibility of the African yambean (Sphenostylis stenocarpa). Plant Foods for Human Nutrition, 49(1), 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa, M. E. R., Guevara-Oquendo, V. H., Newkirk, R. W., & Yu, P. (2020). Effect of heat processing methods on the protein molecular structure, physicochemical, and nutritional characteristics of faba bean (low and normal tannin) grown in western Canada. Animal Feed Science and Technology, 269, 114681.

    Article  CAS  Google Scholar 

  • Farkas, J., & Mohácsi-Farkas, C. (2011). History and future of food irradiation. Trends in Food Science & Technology, 22(2–3), 121–126.

    Article  CAS  Google Scholar 

  • Frias, J., Doblado, R., Antezana, J. R., & Vidal-Valverde, C. (2003). Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chemistry, 81(2), 233–239.

    Article  CAS  Google Scholar 

  • Giczewska, A., & Borowska, J. (2004). Nutritional value of broad bean seeds. Part 3: Changes of dietary fibre and starch in the production of commercial flours. Food/Nahrung, 48(2), 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Granito, M., & Alvarez, G. (2006). Lactic acid fermentation of black beans (Phaseolus vulgaris): Microbiological and chemical characterization. Journal of the Science of Food and Agriculture, 86(8), 1164–1171.

    Article  CAS  Google Scholar 

  • Güzel, D., & Sayar, S. (2012). Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. Journal Food Science and Technology, 49(1), 89–95.

    Article  Google Scholar 

  • Hardy, J., Parmentier, M., & Fanni, J. (1999). Functionality of nutrients and thermal treatments of food. Proceedings of the Nutrition Society, 58(3), 579–585.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, A. B., Osman, G. A., Rushdi, M. A., Eltayeb, M. M., & Diab, E. (2009). Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and sorghum (Sorghum bicolor) grains. Pakistan Journal of Nutrition, 8(2), 167–171.

    Article  CAS  Google Scholar 

  • Hefni, M. E., Shalaby, M. T., & Witthöft, C. M. (2015). Folate content in faba beans (Vicia faba L.)—effects of cultivar, maturity stage, industrial processing, and bioprocessing. Food Science & Nutrition, 3(1), 65–73.

    Article  CAS  Google Scholar 

  • Huma, N., Anjum, M., Sehar, S., Khan, M. I., & Hussain, S. (2008). Effect of soaking and cooking on nutritional quality and safety of legumes. Food Science & Nutrition, 38(6), 570–577.

    Article  Google Scholar 

  • Khalil, A., & Mansour, E. (1995). The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chemistry, 54(2), 177–182.

    Article  CAS  Google Scholar 

  • Khatoon, N., & Prakash, J. (2004). Nutritional quality of microwave-cooked and pressure-cooked legumes. International Journal of Food Sciences and Nutrition, 55(6), 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Kmiecik, W., Lisiewska, Z., & Jaworska, G. (2000). Content of ash components in the fresh and preserved broad bean (Vicia faba v major). Journal of Food Composition and Analysis, 13(6), 905–914.

    Article  CAS  Google Scholar 

  • Koppelman, S. J., Nieuwenhuizen, W. F., Gaspari, M., Knippels, L. M., Penninks, A. H., Knol, E. F., Hefle, S. L., & de Jongh, H. H. (2005). Reversible denaturation of Brazil nut 2S albumin (Ber e1) and implication of structural destabilization on digestion by pepsin. Journal of Agricultural and Food Chemistry, 53(1), 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Labba, I.-C. M., Frøkiær, H., & Sandberg, A.-S. (2021). Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 140, 110038.

    Article  Google Scholar 

  • Lima, D. C., Miano, A. C., Augusto, P. E. D., & Arthur, V. (2019). Gamma irradiation of common beans: Effect on nutritional and technological properties. LWT Food Science and Technology, 116, 108539.

    Article  CAS  Google Scholar 

  • Luo, Y., & Xie, W. (2012). Effect of phytase treatment on iron bioavailability in faba bean (Vicia faba L.) flour. Food Chemistry, 134(3), 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y.-W., & Xie, W.-H. (2013). Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia faba L.). CyTA-Journal of Food, 11(1), 43–49.

    Article  CAS  Google Scholar 

  • Luo, Y., Gu, Z., Han, Y., & Chen, Z. (2009). The impact of processing on phytic acid, in vitro soluble iron and Phy/Fe molar ratio of faba bean (Vicia faba L.). Journal of the Science of Food and Agriculture, 89(5), 861–866.

    Article  CAS  Google Scholar 

  • Luo, Y., Xie, W., & Cui, Q. (2010). Effects of phytases and dehulling treatments on in vitro iron and zinc bioavailability in faba bean (Vicia faba L.) flour and legume fractions. Journal of Food Science, 75(2), C191–C198.

    Article  CAS  PubMed  Google Scholar 

  • Manzoor, N., Dar, A. H., Khan, S., Hakeem, H. R., & Makroo, H. A. (2019). Effect of blanching and drying temperatures on various physico-chemical characteristics of green beans. Asian Journal of Dairy and Food Research, 38(3), 213–223.

    Article  Google Scholar 

  • Nalle, C. L., Ravindran, G., & Ravindran, V. (2010). Influence of dehulling on the apparent metabolisable energy and ileal amino acid digestibility of grain legumes for broilers. Journal of the Science of Food and Agriculture, 90(7), 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  • Nergiz, C., & Gökgöz, E. (2007). Effects of traditional cooking methods on some antinutrients and in vitro protein digestibility of dry bean varieties (Phaseolus vulgaris L.) grown in Turkey. International Journal of Food Science and Technology, 42(7), 868–873.

    Article  CAS  Google Scholar 

  • Nyyssölä, A., Nisov, A., Lille, M., Nikinmaa, M., Rosa-Sibakov, N., Ellilä, S., Valkonen, M., & Nordlund, E. (2021). Enzymatic reduction of galactooligosaccharide content of faba bean and yellow pea ingredients and food products. Future Foods, 4, 100047.

    Article  Google Scholar 

  • Osman, A. M. A., Hassan, A. B., Osman, G. A., Mohammed, N., Rushdi, M. A., Diab, E. E., & Babiker, E. E. (2014). Effects of gamma irradiation and/or cooking on nutritional quality of faba bean (Vicia faba L.) cultivars seeds. Journal of Food Science and Technology, 51(8), 1554–1560.

    Article  CAS  PubMed  Google Scholar 

  • Oyeyinka, A. T., Pillay, K., & Siwela, M. (2019). Full title-In vitro digestibility, amino acid profile and antioxidant activity of cooked Bambara groundnut grain. Food Bioscience, 31, 100428.

    Article  CAS  Google Scholar 

  • Pasqualone, A., Costantini, M., Coldea, T. E., & Summo, C. (2020). Use of legumes in extrusion cooking: A review. Foods, 9(7), 958.

    Article  CAS  PubMed Central  Google Scholar 

  • Patil, S. B., & Khan, M. (2011). Germinated brown rice as a value added rice product: A review. Journal of Food Science and Technology, 48(6), 661–667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil, S. S., Brennan, M. A., Mason, S. L., & Brennan, C. S. (2016). The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snack. Foods, 5(2), 26.

    Article  PubMed Central  Google Scholar 

  • Petzold, G., Caro, M., & Moreno, J. (2014). Influence of blanching, freezing and frozen storage on physicochemical properties of broad beans (Vicia faba L). International Journal of Refrigeration, 40, 429–434.

    Article  CAS  Google Scholar 

  • Prodanov, M., Sierra, I., & Vidal-Valverde, C. (1997). Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 205(1), 48–52.

    Article  CAS  Google Scholar 

  • Prodanov, M., Sierra, I., & Vidal-Valverde, C. (2004). Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chemistry, 84(2), 271–277.

    Article  CAS  Google Scholar 

  • Pysz, M., Polaszczyk, S., Leszczyńska, T., & Piątkowska, E. (2012). Effect of microwave field on trypsin inhibitors activity and protein quality of broad bean seeds (Vicia faba var. major). Acta Scientiarum Polonorum Technologia Alimentaria, 11(2), 193–198.

    CAS  PubMed  Google Scholar 

  • Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, anti-nutritional factors, pre-treatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT-Food Science and Technology, 138, 110796.

    Article  CAS  Google Scholar 

  • Revilla, I. (2015). Impact of thermal processing on faba bean (Vicia faba) composition. In V. Preedy (Ed.), Processing and impact on active components in food (pp. 337–343). Elsevier.

    Chapter  Google Scholar 

  • Roberts, P. B. (2014). Food irradiation is safe: Half a century of studies. Radiation Physics and Chemistry, 105, 78–82.

    Article  CAS  Google Scholar 

  • Rosa-Sibakov, N., Re, M., Karsma, A., Laitila, A., & Nordlund, E. (2018). Phytic acid reduction by bioprocessing as a tool to improve the in vitro digestibility of faba bean protein. Journal of Agricultural and Food Chemistry, 66(40), 10394–10399.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., & Sehgal, S. (1992). Effect of processing and cooking on the antinutritional factors of faba bean (Vicia faba). Food Chemistry, 43(5), 383–385.

    Article  CAS  Google Scholar 

  • Siah, S., Konczak, I., Wood, J. A., Agboola, S., & Blanchard, C. L. (2014). Effects of roasting on phenolic composition and in vitro antioxidant capacity of Australian grown faba beans (Vicia faba L.). Plant Foods for Human Nutrition, 69(1), 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. K., Bharati, R., Ch, N., & Pedpati, A. (2013). An assessment of faba bean (Vicia faba L.) current status and future prospect. African Journal of Agricultural Research, 8(50), 6634–6641.

    Google Scholar 

  • Toklu, F., Sen, G. D., Karaköy, T., & Özkan, H. (2021). Bioactives and nutraceuticals in food legumes: Nutritional perspective. In D. Sen Gupta, S. Gupta, & J. Kumar (Eds.), Breeding for enhanced nutrition and bio-active compounds in food legumes (pp. 229–245). Springer.

    Chapter  Google Scholar 

  • Torres, A., Frias, J., Granito, M., & Vidal-Valverde, C. (2007). Germinated Cajanus cajan seeds as ingredients in pasta products: Chemical, biological and sensory evaluation. Food Chemistry, 101(1), 202–211.

    Article  CAS  Google Scholar 

  • Urbano, G., Lopez-Jurado, M., Fernandez, M., Moreu, M.-C., Porres-Foulquie, J., Frias, J., & Vidal-Valverde, C. (1999). Ca and P bioavailability of processed lentils as affected by dietary fiber and phytic acid content. Nutrition Research, 19(1), 49–64.

    Article  CAS  Google Scholar 

  • Van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., Somoza, V., Knorr, D., Jasti, P. R., & Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. Molecular Nutrition & Food Research, 54(9), 1215–1247.

    Article  Google Scholar 

  • Van der Poel, A., Gravendeel, S., & Boer, H. (1991). Effect of different processing methods on tannin content and in vitro protein digestibility of faba bean (Vicia faba L.). Animal Feed Science and Technology, 33(1–2), 49–58.

    Article  Google Scholar 

  • Verni, M., Wang, C., Montemurro, M., De Angelis, M., Katina, K., Rizzello, C. G., & Coda, R. (2017). Exploring the microbiota of faba bean: Functional characterization of lactic acid bacteria. Frontiers in Microbiology, 8, 2461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal-Valverde, C., Frias, J., Sotomayor, C., Diaz-Pollan, C., Fernandez, M., & Urbano, G. (1998). Nutrients and antinutritional factors in faba beans as affected by processing. European Food Research and Technology, 207(2), 140–145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyeyinka, A.T., Adebo, O.A., Kesa, H. (2022). Effect of Processing on the Nutrients and Anti-nutrients Composition of Faba-Bean. In: Punia Bangar, S., Bala Dhull, S. (eds) Faba Bean: Chemistry, Properties and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-031-14587-2_7

Download citation

Publish with us

Policies and ethics