Skip to main content

Impact on Science and Technology

  • Chapter
  • First Online:
Nuclear Fission

Abstract

The nuclear fission process is not only a fascinating topic for modern science, it also plays a crucial role in a host of important technologies and applications. The safe, reliable and low-carbon production of electricity by nuclear reactors is an important component in a modern energy portfolio. Section 4.1 briefly reviews how a nuclear reactor operates and discusses the nuclear fission processes at play across the entire nuclear fuel cycle. The development of nuclear reactors preceded by a few years only the first atomic explosion in the desert of New Mexico, USA. Safeguarding existing stockpile of nuclear weapons and monitoring nuclear activities across the globe is the topic of Sect. 4.2. Scientific activities enabled by the development of underground nuclear testing, including the discovery of several elements, are also described. Nuclear fission may play a crucial role in the formation of the heaviest elements in the cosmos. In the environments of cataclysmic astrophysical events of supernovae or compact object mergers, continual rapid neutron capture and beta decays may synthesize the actinides. Section 4.3 provides a brief overview of the importance of fission in the r process and highlights the potential insights that can be gained from future observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 31 March 2023

    A correction has been published.

Notes

  1. 1.

    Named after the famous fictional submarine appearing in Jules Verne’s 1870 science fiction novel Twenty Thousand Leagues Under the Sea.

  2. 2.

    There exists a long list of codes used by the nuclear industry, national laboratories, universities, for a broad range of specialized reactor neutronics calculations, e.g., SERPENT, SCALE, MCNP, TRIPOLI, APPOLO.

  3. 3.

    This is achieved either by directly boiling the coolant inside the reactor (BWR) or indirectly through the heat exchanger (PWR).

  4. 4.

    Assuming an infinite sized reactor, with no leakage.

  5. 5.

    The terms fissile and fertile refer to nuclei that readily fission when hit by neutrons, and nuclei that produce other fissile isotopes through neutron capture for instance, respectively. More details can be found in Chap. 1, Sect. 1.1.2.

  6. 6.

    Some of the fission products accumulating in the reactor have very large neutron capture cross sections, and are therefore considered strong neutron absorbers or “poisons,” e.g., 135Xe and 149Sm. Note that 135Xe has the highest of the known capture cross sections, at 2.7 million barns at thermal energy!

  7. 7.

    Cross sections of other isotopes, e.g., hydrogen, oxygen, structural materials, are also relevant, but we limit ourselves to actinides for the purpose of this discussion.

  8. 8.

    MOX fuel stands for mixed oxide fuel that contains recycled plutonium and depleted uranium.

  9. 9.

    This is only true to some extent. See Chap. 3 for more details.

  10. 10.

    Recent efforts in this direction are being explored thanks to the development of fission event generators, as described in Chap. 3, which keep track of all correlations and distributions of the emitted prompt neutrons on an event-by-event basis.

  11. 11.

    The role of isomers in fission fragments on the time dependence of prompt γ rays was studied in Talou et al. [97].

  12. 12.

    Notations are the ones used by Selby et al. [124].

References

  1. International Atomic Energy Agency, IAEA Power Reactor Information System (PRIS). https://pris.iaea.org/pris (2022)

  2. G.R. Schmidt, T.J. Sutliff, L.A. Dudzinski, Radioisotope power: a key technology for deep space exploration, in 6th Int. Energy Conversion Engineering Conference (IECEC) edited by American Institute of Aeronautics and Astronautics (2008)

    Google Scholar 

  3. D. Malain, P. Kanchana, Evaluation of radiation safety for ionization chamber smoke detectors containing Am-241. J. Phys. Conf. Ser. 1285, 012047 (2019)

    Google Scholar 

  4. T. Ruth, Accelerating production of medical isotopes. Nature 457, 536 (2009)

    ADS  Google Scholar 

  5. OECD Nuclear Energy Agency, Nuclear Production of Hydrogen, tech. rep. 6805 (OECD/NEA, 2010)

    Google Scholar 

  6. IAEA, New Technologies for Seawater Desalination Using Nuclear Energy, tech. rep. IAEA-TECDOC-1753 (International Atomic Energy Agency, 2015)

    Google Scholar 

  7. T. Araki et al. (KamLAND Collaboration), Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005)

    Google Scholar 

  8. F. Reines, C.L. Cowan, The Neutrino. Nature 178, 446 (1956)

    Google Scholar 

  9. A.C. Hayes, G. Jungman, E.A. McCutchan, A.A. Sonzogni, G.T. Garvey, X.B. Wang, Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup. Phys. Rev Lett. 120, 022503 (2018)

    ADS  Google Scholar 

  10. A. Bernstein, N. Bowden, B.L. Goldblum, P. Huber, I. Jovanovic, J. Mattingly, Colloquium: Neutrino detectors as tools for nuclear security. Rev. Mod. Phys. 92, 011003 (2020)

    ADS  Google Scholar 

  11. P.K. Kuroda, On the nuclear physical stability of the uranium minerals. J. Chem. Phys. 25, 781 (1956)

    ADS  Google Scholar 

  12. R. Bodu, H. Bouzigues, N. Morin, J.P. Pfiffelmann, Sur l’existence d’anomalies isotopiques rencontrées dans l’uranium du Gabon. C. R. Acad. Sci. Paris 275, 1731 (1972)

    Google Scholar 

  13. F. Gauthier-Lafaye, P. Holliger, P.L. Blanc, Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a “critical event” in a geologic system. Geochim. Cosmochim. Acta 60, 4831 (1996)

    ADS  Google Scholar 

  14. N.W. Touran, J. Gilleland, G.T. Malmgren, C. Whitmer, W.H. Gates, Computational tools for the integrated design of advanced nuclear reactors. Engineering 3, 518 (2017)

    Google Scholar 

  15. J. A. Turner et al., The virtual environment for reactor applications (VERA): Design and architecture. J. Comp. Phys. 326, 544 (2016)

    ADS  Google Scholar 

  16. Consortium for Advanced Simulations of Light Water Reactors. https://casl.gov (2022)

  17. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets 148, 1 (2018)

    Google Scholar 

  18. N. Brown et al., Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems. Nucl. Eng. Des. 289, 252 (2015)

    Google Scholar 

  19. C. Rubbia, A realistic plutonium elimination scheme with fast energy amplifiers and thorium-plutonium fuel, tech. rep. CERN-AT-95-53-ET (CERN, 1995)

    Google Scholar 

  20. Status of Accelerator Driven Systems Research and Technology Development, TEC-DOC Series 1766 (International Atomic Energy Agency, Vienna, 2015)

    Google Scholar 

  21. G. Aliberti et al., Nuclear data sensitivity, uncertainty and target accuracy assess- ment for future nuclear systems. Ann. Nucl. Energy 33, 700 (2006)

    Google Scholar 

  22. R. J. Casperson et al. (NIFFTE Collaboration), Measurement of the normalized 238U(n,f)/235U(n,f) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber. Phys. Rev. C 97, 034618 (2018)

    Google Scholar 

  23. L. Snyder et al., Measurement of the 239Pu(n,f)/235U(n,f) cross-section ratio with the NIFFTE fission Time Projection Chamber. Nucl. Data Sheets 178, 1 (2021)

    ADS  Google Scholar 

  24. M. Calviani et al. (n_TOF Collaboration), High-accuracy 233U(n,f) cross-section measurement at the white-neutron source n_TOF from near-thermal to 1 MeV neu-tron energy. Phys. Rev. C 80, 044604 (2009)

    Google Scholar 

  25. C. Paradela et al. (n_TOF Collaboration), Neutron-induced fission cross section of 234U and 237Np measured at the CERN Neutron Time-of-Flight (n_TOF) facility. Phys. Rev. C 82, 034601 (2010)

    Google Scholar 

  26. R. Sarmento et al. (The n_TOF Collaboration), Measurement of the 236U(n,f) cross section from 170 meV to 2 MeV at the CERN n_TOF facility. Phys. Rev C 84, 044618 (2011)

    Google Scholar 

  27. N. Colonna et al., The fission experimental programme at the CERN n_TOF facility: status and perspectives. Eur. Phys. J. A 56, 48 (2020)

    ADS  Google Scholar 

  28. G. Palmiotti, M. Salvatores, Developments in sensitivity methodologies and the validation of reactor physics calculations. Sci. Techn. Nucl. Install. 2012, 529623 (2012)

    Google Scholar 

  29. T. Takeda, Revisitation of the studies on covariance data and adjustment analysis: A tribute to M. Salvatores for his great works and remaining future tasks. Ann. Nucl. Energy 151, 107895 (2021)

    Google Scholar 

  30. A.D. Carlson et al., Evaluation of the neutron data standards. Nucl. Data Sheets 148, 143 (2018)

    ADS  Google Scholar 

  31. D. Neudecker et al., Applying a template of expected uncertainties to updating 239Pu(n,f) cross-section covariances in the neutron data standards database. Nucl. Data Sheets 163, 228 (2020)

    ADS  Google Scholar 

  32. J. Arthur, R. Bahran, J. Hutchinson, A. Sood, M. Rising, S.A. Pozzi, Validating the performance of correlated fission multiplicity implementation in radiation trans- port codes with subcritical neutron multiplication benchmark experiments. Ann. Nucl. Energy 120, 348 (2018)

    Google Scholar 

  33. R. Gwin, R. Spencer, R. Ingle, Measurements of the energy dependence of prompt neutron emission from 233U 235U and 239Pu for E n = 0.0005 to 10 MeV relative to emission from spontaneous fission of 252Cf. Nucl. Sci. Eng. 94, 365 (1986)

    Google Scholar 

  34. J. Hopkins, B. Diven, Prompt neutrons from fission. Nucl. Phys. 48, 433 (1963)

    Google Scholar 

  35. P. Marini et al., Energy Dependence of Prompt Fission Neutron Multiplicity in the 239 Pu(n, f) Reaction (2021)

    Google Scholar 

  36. J.E. Lynn, P. Talou, O. Bouland, Reexamining the role of the (n, γf) process in the low-energy fission of 235U and 239Pu. Phys. Rev. C 97, 064601 (2018)

    ADS  Google Scholar 

  37. G. Noguere et al., Improved MOX fuel calculations using new Pu-239, Am-241 and Pu-240 evaluations. Eur. Phys. J. Web Conf. 42, 05005 (2013)

    Google Scholar 

  38. T. Ohsawa, Empirical formulas for estimation of fission prompt neutron multi- plicity for actinide nuclides. J. Nucl. Radiochem. Sci. 9, 19 (2008)

    Google Scholar 

  39. D. Neudecker, A. Lovell, P. Talou, Producing ENDF/B-quality evaluations of 239 Pu(n, f) and 235 U(n, f) average prompt neutron multiplicities using the CGMF model, tech. rep. LA-UR-21-29906 (Los Alamos National Laboratory, 2021)

    Google Scholar 

  40. D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities. Nucl. Sci. Eng. 81, 213 (1982)

    ADS  Google Scholar 

  41. Y. Peneliau, O. Litaize, P. Archier, C.D.S. Jean, 239Pu Prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks. Nucl. Data Sheets 118, 459 (2014)

    Google Scholar 

  42. Nuclear Energy Agency, ICSBEP Handbook 2020. https://doi.org/https://doi.org/10.1787/7e0ebc50-en (2020)

  43. J. Tain et al., The BRIKEN Project: extensive measurements of β-delayed neutron emitters for the astrophysical r process. Acta Phys. Pol. B 49, 417 (2018)

    ADS  Google Scholar 

  44. INDC International Nuclear Data Committee, Development of a reference database for beta-delayed neutron emission, tech. rep. (International Atomic Energy Agency, 2017)

    Google Scholar 

  45. B. Pfeiffer, K.L. Kratz, P. Möller, Status of delayed-neutron precursor data: half-lives and neutron emission probabilities. Prog. Nucl. Energy 41, 39 (2002)

    Google Scholar 

  46. J. Liang et al., Compilation and evaluation of beta-delayed neutron emission probabilities and half-lives for Z >  28 precursors. Nucl. Data Sheets 168, 1 (2020)

    ADS  Google Scholar 

  47. P. Möller, J. Nix, K. Kratz, Nuclear properties for astrophysical and radioactive ion beam applications. Atom. Data Nucl. Data Tab. 66, 131 (1997)

    ADS  Google Scholar 

  48. T. Kawano, P. Möller, W.B. Wilson, Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation–Hauser-Feshbach model. Phys. Rev C 78, 054601 (2008)

    ADS  Google Scholar 

  49. P. Möller, M.R. Mumpower, T. Kawano, W.D. Myers, Nuclear properties for astrophysical and radioactive-ion-beam applications (II). At. Data Nucl. Data Tables 125, 1 (2019)

    ADS  Google Scholar 

  50. J.L. Tain et al., Enhanced γ-ray emission from neutron unbound states populated in β decay. Phys. Rev. Lett. 115, 062502 (2015)

    ADS  Google Scholar 

  51. K.L. Kratz, G. Herrmann, Systematics of neutron emission probabilities from delayed neutron precursors. Z. Phys. 263, 435 (1973)

    ADS  Google Scholar 

  52. E.A. McCutchan, A.A. Sonzogni, T.D. Johnson, D. Abriola, M. Birch, B. Singh, Improving systematic predictions of β-delayed neutron emission probabilities. Phys. Rev. C 86, 041305 (2012)

    ADS  Google Scholar 

  53. G.R. Keepin, T.F. Wimett, R.K. Zeigler, Delayed Neutrons from fissionable isotopes of uranium, plutonium, and thorium. Phys. Rev. 107, 1044 (1957)

    ADS  Google Scholar 

  54. K. Takahashi, K. Nakajima, T. Sano, A. Sakon, S.Y Hohara, K. Hashimoto, Validation of several sets of delayed-neutron group parameters for thermal fission of 235U by a Feynman-α analysis. J. Nucl. Sci. Technol. 59, 240 (2022)

    Google Scholar 

  55. G.D. Spriggs, J.M. Campbell, V.M. Piksaikin, An 8-group delayed neutron model based on a consistent set of half-lives. Prog. Nucl. Energy 41, 223 (2002)

    Google Scholar 

  56. B. Geslot et al., Measuring the delayed neutrons multiplicity and kinetic parameters for the thermal induced fission of 235U, 239Pu and 233U. Eur. Phys. J. Web Conf. 253, 01004 (2021)

    Google Scholar 

  57. D. Foligno et al., Measurement of the delayed-neutron multiplicity and time constants in the thermal neutron induced fission of 235U at ILL. Eur. Phys. J. Web Conf. 239, 18006 (2020)

    Google Scholar 

  58. S. Okumura, T. Kawano, A. Lovell, T. Yoshida, Energy dependent calculations of fission product, prompt, and delayed neutron yields for neutron induced fission on 235U, 238U, and 239Pu. J. Nucl. Sci. Technol. 59, 96 (2022)

    Google Scholar 

  59. V. Piksaikin, A. Egorov, K. Mitrofanov, The absolute total delayed neutron yields, relative abundances and half-lives of delayed neutron groups from neutron-induced fission of 232tTh, 233 U,236 U,239Pu and 241Am, tech. rep. INDC(NDS)- 0646 (International Atomic Energy Agency, 2013)

    Google Scholar 

  60. B.C. Kiedrowski, F.B. Brown, P.P.H. Wilson, AdjointWeighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo. Nucl. Sci. Eng. 168, 226 (2011)

    ADS  Google Scholar 

  61. G. Chiba, Y. Nagaya, T. Mori, On effective delayed neutron fraction calculations with iterated fission probability. J. Nucl. Sci. Technol. 48, 1163 (2011)

    Google Scholar 

  62. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Computing adjoint-weighted kinetics parameters in Tripoli-4® by the Iterated Fission Probability method. Ann. Nucl. Energy 85, 17 (2015)

    Google Scholar 

  63. I. A. Kodeli, Sensitivity and uncertainty in the effective delayed neutron fraction (β eff). Nucl. Instrum. Methods Phys. Res. Sect. A 715, 70 (2013)

    ADS  Google Scholar 

  64. A. Lüthi, R. Chawla, G. Rimpault, Improved gamma-heating calculational methods for fast reactors and their validation for plutonium-burning configurations. Nucl. Sci. Eng. 138, 233 (2001)

    ADS  Google Scholar 

  65. G. Rimpault, D. Bernard, D. Blanchet, C. Vaglio-Gaudard, S. Ravaux, A. Santamarina, Needs of accurate prompt and delayed γ-spectrum and multiplicity for nuclear reactor designs. Phys. Procedia 31, 3 (2012)

    ADS  Google Scholar 

  66. R.A. Wigeland, T.H. Bauer, T.H. Fanning, E.E. Morris, Separations and transmutation criteria to improve utilization of a geologic repository. Nucl. Technol. 154, 95 (2006)

    ADS  Google Scholar 

  67. D. Jordan et al., Total absorption study of the β decay of 102, 104, 105Tc. Phys. Rev. C 87, 044318 (2013)

    ADS  Google Scholar 

  68. M. Pigni, M. Francis, I. Gauld, Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions. Nucl. Data Sheets 123, 231 (2015)

    Google Scholar 

  69. N. Terranova, O. Serot, P. Archier, C.D.S. Jean, M. Sumini, Covariance matrix evaluations for independent mass fission yields. Nucl. Data Sheets 123, 225 (2015)

    ADS  Google Scholar 

  70. K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, F. Minato, S. Chiba, Evaluation of fission product yields and associated covariance matrices. J. Nucl. Sci. Technol. 58, 151 (2020)

    Google Scholar 

  71. E.F. Matthews, L.A. Bernstein, W. Younes, Stochastically estimated covariance matrices for independent and cumulative fission yields in the ENDF/B-VIII.0 and JEFF-3.3 evaluations. At. Data Nucl. Data Tables 140, 101441 (2021)

    Google Scholar 

  72. P. Jaffke, Identifying inconsistencies in fission product yield evaluations with prompt neutron emission. Nucl. Sci. Eng. 190, 258 (2018)

    ADS  Google Scholar 

  73. M. Yoho et al., Improved plutonium and americium photon branching ratios from microcalorimeter gamma spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 977, 164307 (2020)

    Google Scholar 

  74. P. Huber, Determination of antineutrino spectra from nuclear reactors. Phys. Rev. C 84, 024617 (2011)

    ADS  Google Scholar 

  75. T.A. Mueller et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011)

    ADS  Google Scholar 

  76. A.C.H.P. Vogel, Reactor neutrino spectra. Annu. Rev. Nucl. Part. Sci. 66, 219 (2016)

    ADS  Google Scholar 

  77. F.P. An et al. (Daya Bay Collaboration), Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Phys. Rev. Lett. 118, 251801 (2017)

    Google Scholar 

  78. C. Giunti, Y. Li, C. Ternes, Z. Xin, Reactor antineutrino anomaly in light of recent flux model refinements. Phys. Lett. B 829, 137054 (2022)

    Google Scholar 

  79. J. Hutchinson et al., A new era of nuclear criticality experiments: the first 10 years of radiation test object operations at NCERC. Nucl. Sci. Eng. 195, S80 (2021)

    Google Scholar 

  80. J. Goda et al., A new era of nuclear criticality experiments: the first 10 years of Godiva IV Operations at NCERC. Nucl. Sci. Eng. 195, S55 (2021)

    Google Scholar 

  81. D. Hayes et al., A new era of nuclear criticality experiments: the first 10 years of flattop operations at NCERC. Nucl. Sci. Eng. 195, S37 (2021)

    Google Scholar 

  82. N. Thompson et al., A new era of nuclear criticality experiments: the first 10 years of comet operations at NCERC. Nucl. Sci. Eng. 195, S17 (2021)

    Google Scholar 

  83. J.A. Favorite, Jezebel: reconstructing a critical experiment from 60 years ago, Presentation, Purdue University, Nuclear Engineering School Seminar, March 20, 2017 LA-UR-17-21183 (Los Alamos National Laboratory, 2017)

    Google Scholar 

  84. R.E. Peterson, G.A. Newby, An unreflected U-235 critical assembly. Nucl. Sci. Eng. 1, 112 (1956)

    ADS  Google Scholar 

  85. R. Sanchez, D. Loaiza, R. Kimpland, D. Hayes, C. Cappiello, M. Chadwick, Criticality of a 237Np sphere. Nucl. Sci. Eng. 158, 1 (2008)

    ADS  Google Scholar 

  86. G.E. Hansen, H.C. Paxton, A critical assembly of uranium enriched to 10% in Uranium-235. Nucl. Sci. Eng. 72, 230 (1979)

    ADS  Google Scholar 

  87. G.E. Hansen, H.C. Paxton, Thor, a thorium-reflected plutonium-metal critical assembly. Nucl. Sci. Eng. 71, 287 (1979)

    ADS  Google Scholar 

  88. E.C. Miller, B. Dennis, S.D. Clarke, S.A. Pozzi, J. K. Mattingly, Simulation of polyethylene-moderated plutonium neutron multiplicity measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 652, 540 (2011)

    ADS  Google Scholar 

  89. J.A. Favorite, R.W. Brewer, M. Zerkle, Bare Sphere of Plutonium-239 Metal (4.5 at.% 240Pu, 1.02 wt.% Ga), tech. rep. International Handbook of Evaluated Criticality Safety Benchmark Experiments, PU-MET-FAST-001 (Nuclear Energy Agency, Organization for Economic Cooperation and Development, 2016)

    Google Scholar 

  90. T. Goorley et al., Initial MCNP6 release overview. Nucl. Technol. 180, 298 (2012)

    ADS  Google Scholar 

  91. C.J. Werner, J.S. Bull, C.J.J. Solomon, F.B. Brown, G.W. McKinney et al., MCNP Version 6.2 Release Notes, tech. rep. LA-UR-18-20808 (Los Alamos National Laboratory, 2018)

    Google Scholar 

  92. K.J. Kelly et al., Measurement of the 239Pu(n,f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by neutrons of energy 1–20 MeV. Phys. Rev C 102, 034615 (2020)

    ADS  Google Scholar 

  93. D. Neudecker et al., Enhancing nuclear data validation analysis by using machine learning. Nucl. Data Sheets 167, 36 (2020)

    ADS  Google Scholar 

  94. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, Correlation \(\bar {v}_p-\sigma -\chi \) in the fast neutron range via integral information. EPJ Nucl. Sci. Technol. 3, 14 (2017)

    Google Scholar 

  95. A. DeYoung et al., First NDSE LDRD proof-of-concept experiments, tech. rep. LA-CP-16-20465 (Los Alamos National Laboratory, 2016)

    Google Scholar 

  96. J.A. Gomez et al., Results of three neutron diagnosed subcritical experiments. Nucl. Sci. Eng. 193, 537 (2018)

    ADS  Google Scholar 

  97. P. Talou, T. Kawano, I. Stetcu, J. Lestone, E. McKigney, M. Chadwick, Late-time emission of prompt fission γ rays. Phys. Rev. C 94, 064613 (2016)

    ADS  Google Scholar 

  98. P. Santi, M. Miller, Reevaluation of prompt neutron emission multiplicity distributions for spontaneous fission. Nucl. Sci. Eng. 160, 190 (2008)

    ADS  Google Scholar 

  99. S. Croft, A. Favalli, Review and evaluation of the spontaneous fission half-lives of 238Pu, 240Pu, and 242Pu and the corresponding specific fission rates. Nucl. Data Sheets 175, 269 (2021)

    ADS  Google Scholar 

  100. R.P. Feynman, F. De Hoffmann, R. Serber, Dispersion of the neutron emission in U-235 fission. J. Nucl. Energy 3, 64 (1956)

    Google Scholar 

  101. D. Langner, J. Stewart, M. Pickrell, M. Krick, N. Ensslin, and W. Harker, Application guide to neutron multiplicity counting, tech. rep. LA-13422-M (Los Alamos National Laboratory, Nov. 1998)

    Google Scholar 

  102. M.J. Marcath, T.H. Shin, S.D. Clarke, P. Peerani, S.A. Pozzi, Neutron angular distribution in plutonium-240 spontaneous fission. Nucl. Instrum. Methods Phys. Res., Sect. A 830, 163 (2016)

    Google Scholar 

  103. A. Di Fulvio, T.H. Shin, C. Sosa, S.D. Clarke, D.L. Chichester, S.A. Pozzi, Fast-neutron multiplicity counter for passive and active measurements of special nuclear material, in Institute of Nuclear Materials Management. Annual Meeting. 58th 2017 (INMM 2017), INL/CON-17-41061 (2017)

    Google Scholar 

  104. S. Dazeley, F. Sutanto, V. Li, V. Mozin, A flexible and modular fast neutron multiplicity counter for correlated nuclear data research, tech. rep. LLNL-PROC- 825288 (Lawrence Livermore National Laboratory, 2021)

    Google Scholar 

  105. P. Talou et al., Correlated prompt fission data in transport simulations. Eur. Phys. J. A 54, 9 (2018)

    ADS  Google Scholar 

  106. J. Verbeke, Neutron multiplicity counting: credible regions for reconstruction parameters. Nucl. Sci. Eng. 182, 481 (2016)

    ADS  Google Scholar 

  107. A. Enqvist, S.A. Pozzi, I. Pázsit, The detection statistics of neutrons and photons emitted from a fissile sample. Nucl. Instrum. Methods Phys. Res. Sect. A 607, 451 (2009)

    ADS  Google Scholar 

  108. K.S. Kim, L.F. Nakae, M.K. Prasad, N.J. Snyderman, J.M. Verbeke, Time evolving fission chain theory and fast neutron and gamma-ray counting distributions. Nucl. Sci. Eng. 181, 225 (2015)

    ADS  Google Scholar 

  109. K. Böhnel, The effect of multiplication on the quantitative determination of spontaneously fissioning isotopes by neutron correlation analysis. Nucl. Sci. Eng. 90, 75 (1985)

    ADS  Google Scholar 

  110. D.M. Cifarelli, W. Hage, Models for a three-parameter analysis of neutron signal correlation measurements for fissile material assay. Nucl. Instrum. Methods Phys. Res. Sect. A 251, 550 (1986)

    ADS  Google Scholar 

  111. D.G. Langner, J.B. Franco, J.G. Fleissner, V. Fotin, J. Xiao, R. Lemaire, The performance of the 30-gallon-drum neutron multiplicity counter at rocky flats environmental technology site, in (Los Alamos National Laboratory, 1996)

    Google Scholar 

  112. D.B. Pelowitz, MCNPX user’s manual, version 2.7.0, Technical Report LA-CP-11- 00438 (Los Alamos National Laboratory, 2011)

    Google Scholar 

  113. J.M. Mueller, J. Mattingly, Using anisotropies in prompt fission neutron co- incidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies. Nucl. Instrum. Methods Phys. Res., Sect. A 825, 87 (2016)

    Google Scholar 

  114. J.M. Mueller, M.W Ahmed, H.R. Weller, A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission. Nucl. Instrum. Methods Phys. Res. Sect. A 754, 57 (2014)

    Google Scholar 

  115. J.M. Mueller et al., Prompt neutron polarization asymmetries in photofission of 232Th, 233, 235, 238U, 237Np, and 239, 240Pu. Phys. Rev. C 89, 034615 (2014)

    ADS  Google Scholar 

  116. S.W. Finch et al., Measurements of short-lived isomers from photofission as a method of active interrogation for special nuclear materials. Phys. Rev. Appl. 15, 034037 (2021)

    ADS  Google Scholar 

  117. A. Etile, D. Denis-Petit, L. Gaudefroy, V. Meot, O. Roig, A gated LaBr3(Ce) detector for border protection applications. Nucl. Instrum. Methods Phys. Res. Sect. A 877, 323 (2018)

    ADS  Google Scholar 

  118. E.B. Norman et al., Signatures of fissile materials: high-energy γ rays following fission. Nucl. Instrum. Methods Phys. Res. Sect. A 521, 608 (2004)

    ADS  Google Scholar 

  119. A. Favalli, M. Iliev, K. Ianakiev, A.W. Hunt, B. Ludewigt, Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material. Nucl. Instrum. Methods Phys. Res. Sect. A 877, 192 (2018)

    ADS  Google Scholar 

  120. S.K. Hanson, W.J. Oldham, Weapons radiochemistry: trinity and beyond. Nucl. Technol. 207, S295 (2021)

    ADS  Google Scholar 

  121. G.E. van der Vink, J. Park, Nuclear test ban monitoring: new requirements, new resources. Science 263, 634 (1994)

    ADS  Google Scholar 

  122. D. Clery, Test Ban Monitoring: No Place to Hide. Science 325, 382 (2009)

    ADS  Google Scholar 

  123. S.K. Hanson et al., Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later. Proc Natl. Acad. Sci. 113, 8104 (2016)

    ADS  Google Scholar 

  124. H. Selby et al., Fission product data measured at Los Alamos for fission spectrum and thermal neutrons on 239Pu, 235U, 238U. Nucl. Data Sheets 111, 2891 (2010)

    ADS  Google Scholar 

  125. M.B. Chadwick et al., Fission product yields from fission spectrum n+239Pu for ENDF/BVII.1. Nucl. Data Sheets 111, 2923 (2010)

    Google Scholar 

  126. A. Ghiorso et al., New elements einsteinium and fermium, atomic numbers 99 and 100. Phys. Rev. 99, 1048 (1955)

    ADS  Google Scholar 

  127. J.P. Balagna, G.P. Ford, D.C. Hoffman, J.D. Knight, Mass symmetry in the spontaneous fission of 257Fm. Phys. Rev. Lett. 26, 145 (1971)

    ADS  Google Scholar 

  128. D.C. Hoffman, Spontaneous fission properties and lifetime systematics. Nucl. Phys. A 502, 21c (1989)

    Google Scholar 

  129. P.A. Seeger, A. Hemmendinger, B.C. Diven, Fission cross sections of 241Am and 242mAm. Nucl. Phys. A 96, 605 (1967)

    ADS  Google Scholar 

  130. J.H. McNally, J.W. Barnes, B.J. Dropesky, P.A. Seeger, K. Wolfsberg, Neutron-induced fission cross section of 237U. Phys. Rev. C 9, 717 (1974)

    ADS  Google Scholar 

  131. M.S. Moore, G.A. Keyworth, Analysis of the fission and capture cross sections of the curium isotopes. Phys. Rev. C 3, 1656 (1971)

    ADS  Google Scholar 

  132. J.P. Lestone, E.F. Shores, Uranium and plutonium average prompt fission neutron energy spectra (PFNS) from the analysis of NTS NUEX data. Nucl. Data Sheets 119, 213 (2014)

    ADS  Google Scholar 

  133. F. Hoyle, The synthesis of the elements from hydrogen. MNRAS 106, 343 (1946)

    ADS  Google Scholar 

  134. A.G.W. Cameron, Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69, 201 (1957)

    ADS  Google Scholar 

  135. P.A. Seeger, W.A. Fowler, D.D. Clayton, Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. (supp.) 11, 121 (1965)

    Google Scholar 

  136. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  137. M.R. Mumpower et al., Impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015)

    ADS  Google Scholar 

  138. R. Surman, M. Mumpower, Masses and lifetimes for r-process nucleosynthesis: FRIB outlook. Eur. Phys. J. Web Conf. 178, 04002 (2018)

    Google Scholar 

  139. C. Lahiri, G. Gangopadhyay, Endpoint of r p process using relativistic mean field approach and a new mass formula. Int. J. Mod. Phys. E 21, 1250074 (2012)

    ADS  Google Scholar 

  140. C. Winteler et al., Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys. J. 750, L22 (2012)

    ADS  Google Scholar 

  141. J. Bliss, A. Arcones, F. Montes, J. Pereira, Impact of (α,n) reactions on weak r process in neutrino-driven winds. J. Phys. G Nucl. Part. Phys. 44, 054003 (2017)

    ADS  Google Scholar 

  142. P. Mösta et al., r-process Nucleosynthesis from three-dimensional magnetorotational core-collapse supernovae. Astrophys. J. 864, 171 (2018)

    Google Scholar 

  143. G. Halevi, P. Mösta, r-Process nucleosynthesis from three-dimensional jet- driven core-collapse supernovae with magnetic misalignments. MNRAS 477, 2366 (2018)

    Google Scholar 

  144. S.M. Matz et al., Gamma-ray line emission from SN1987A. Nature 331, 416 (1988)

    ADS  Google Scholar 

  145. A.I. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262 (1999)

    ADS  Google Scholar 

  146. A.I. MacFadyen, S.E. Woosley, A. Heger, Supernovae, jets, and collapsars. Astrophys. J. 550, 410 (2001)

    ADS  Google Scholar 

  147. R. Surman, G.C. McLaughlin, N Sabbatino, Nucleosynthesis of Nickel-56 from gamma-ray burst accretion disks. Astrophys. J. 743, 155 (2011)

    ADS  Google Scholar 

  148. K. Nakamura, T. Kajino, G.J. Mathews, S. Sato, S. Harikae, r-process nucleosynthesis in the MHD+ neutrino-heated collapsar jet. Astron. Astrophys. 582, A34 (2015)

    Google Scholar 

  149. D.M. Siegel, J. Barnes, B.D. Metzger, Collapsars as a major source of r-process elements. Nature 569, 241 (2019)

    ADS  Google Scholar 

  150. J.M. Miller et al., Full transport general relativistic radiation magnetohydrodynamics for nucleosynthesis in collapsars. Astrophys. J. 902, 66 (2020)

    ADS  Google Scholar 

  151. R. Surman, G.C. McLaughlin, M. Ruffert, H.T. Janka, W.R. Hix, r-Process nucleosynthesis in hot accretion disk flows from black hole-neutron star mergers. Astrophys. J. 679, L117 (2008)

    Google Scholar 

  152. N. Nishimura, S. Wanajo, Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, The r-process in black hole-neutron star mergers based on a fully general-relativistic simulation. J. Phys. Conf. Series 665, 012059 (2016)

    Google Scholar 

  153. L.F. Roberts et al., The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole–neutron star mergers. MNRAS 464, 3907 (2016)

    ADS  Google Scholar 

  154. J.M. Miller et al., Full transport model of GW170817-like disk produces a blue kilonova. Phys. Rev. D 100, 023008 (2019)

    ADS  Google Scholar 

  155. F. Foucart, A brief overview of black hole-neutron star mergers. Front. Astron. Space Sci. 7 (2020).

    Google Scholar 

  156. J.M. Lattimer, F. Mackie, D.G. Ravenhall, D.N. Schramm, The decompression of cold neutron star matter. Astrophys. J. 213, 225 (1977)

    ADS  Google Scholar 

  157. J.J. Cowan et al., Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021)

    ADS  Google Scholar 

  158. LIGO Scientific Collaboration and Virgo Collaboration et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Google Scholar 

  159. P.S. Cowperthwaite et al., the electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, Optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. 848, L17 (2017)

    Google Scholar 

  160. D. Kasen, B. Metzger, J. Barnes, E. Quataert, E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80 (2017)

    ADS  Google Scholar 

  161. J. Aasi et al., Advanced LIGO. Classical Quantum Gravity 32, 074001 (2015)

    ADS  Google Scholar 

  162. F. Acernese et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity 32, 024001 (2014)

    ADS  Google Scholar 

  163. D. Watson et al., Identification of strontium in the merger of two neutron stars. Nature 574, 497 (2019)

    ADS  Google Scholar 

  164. N. Domoto, M. Tanaka, S. Wanajo, K. Kawaguchi, Signatures of r-process Elements in kilonova spectra. Astrophys. J. 913, 26 (2021)

    ADS  Google Scholar 

  165. B.D. Metzger et al., Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. MNRAS 406, 2650 (2010)

    ADS  Google Scholar 

  166. N.R. Tanvir et al., A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547 (2013)

    ADS  Google Scholar 

  167. R.T. Wollaeger et al., Impact of pulsar and fallback sources on multifrequency kilonova models. Astrophys. J. 880, 22 (2019)

    ADS  Google Scholar 

  168. B.D. Metzger, Kilonovae. Living Reviews Relativity 23, 1 (2019)

    ADS  Google Scholar 

  169. A. Aprahamian, I. Bentley, M. Mumpower, R. Surman, Sensitivity studies for the main r process: nuclear masses. AIP Adv. 4, 041101 (2014)

    ADS  Google Scholar 

  170. M.R. Mumpower, T. Kawano, P. Möller, Neutron-γ competition for β-delayed neutron emission. Phys. Rev. C 94, 064317 (2016)

    ADS  Google Scholar 

  171. R. Surman, M. Mumpower, R. Sinclair, K.L. Jones, W.R. Hix, G.C. McLaughlin, Sensitivity studies for the weak r process: neutron capture rates. AIP Adv. 4, 041008 (2014)

    ADS  Google Scholar 

  172. R. Surman, M. Mumpower, J. Cass, I. Bentley A. Aprahamian, G.C. McLaughlin, Sensitivity studies for r-process nucleosynthesis in three astrophysical scenarios. Eur. Phys. J. Web Conf. 66, 07024 (2014)

    Google Scholar 

  173. M. Mumpower, R. Surman, D.L. Fang, M. Beard, A. Aprahamian, The impact of uncertain nuclear masses near closed shells on the r-process abundance pattern. J. Phys. G: Nucl. Phys. 42, 034027 (2015)

    ADS  Google Scholar 

  174. Y.L. Zhu et al., Modeling kilonova light curves: dependence on nuclear inputs. Astrophys. J. 906, 94 (2021)

    ADS  Google Scholar 

  175. J. Barnes et al., Kilonovae across the nuclear physics landscape: the impact of nuclear physics uncertainties on r-process-powered emission. Astrophys. J. 918, 44 (2021)

    ADS  Google Scholar 

  176. F.K. Thielemann et al., What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 66, 346 (2011)

    ADS  Google Scholar 

  177. S.A. Giuliani, G. Martínez-Pinedo, M.R. Wu, L.M. Robledo, Fission and the r-process nucleosynthesis of translead nuclei in neutron star mergers. Phys. Rev. C 102, 045804 (2020)

    ADS  Google Scholar 

  178. G. Martínez-Pinedo et al., The role of fission in the r-process. Prog. Part. Nucl. Phys. 59, 199 (2007)

    ADS  Google Scholar 

  179. C.J. Horowitz, M.E. Caplan, Actinide crystallization and fission reactions in cooling white dwarf stars. Phys. Rev. Lett. 126, 131101 (2021)

    ADS  Google Scholar 

  180. A. Wallner et al., Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nature Commun. 6, 5956 (2015)

    ADS  Google Scholar 

  181. A. Wallner et al., 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science 372, 742 (2021)

    Google Scholar 

  182. X. Wang et al., R-process radioisotopes from near-earth supernovae and kilonovae. Astrophys. J. 923, 219 (2021)

    ADS  Google Scholar 

  183. M. Lugaro, U. Ott, Á. Kereszturi, Radioactive nuclei from cosmochronology to habitability. Prog. Part. Nucl. Phys. 102, 1 (2018)

    ADS  Google Scholar 

  184. B. Côté et al., 129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements. Science 371, 945 (2021)

    Google Scholar 

  185. T.C. Beers, N. Christlieb, The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev Astron. Astrophys. 43, 531 (2005)

    ADS  Google Scholar 

  186. J.J. Cowan et al., r-process abundances and chronometers in metal-poor stars. Astrophys. J. 521, 194 (1999)

    Google Scholar 

  187. C. Sneden et al., Evidence of multiple r-process sites in the early galaxy: new observations of CS 22892-052. Astrophys. J. 533, L139 (2000)

    ADS  Google Scholar 

  188. V. Hill et al., The Hamburg/ESO R-process enhanced star survey (HERES). XI. The highly r-process-enhanced star CS 29497-004. Astron. Astrophys. 607, A91 (2017)

    Google Scholar 

  189. R.H. Dicke, The age of the galaxy from the decay of uranium. Astrophys. J. 155, 123 (1969)

    ADS  Google Scholar 

  190. J.W. Truran, The age of the universe from nuclear chronometers. Proc. Natl. Acad. Sci. 95, 18 (1998)

    ADS  Google Scholar 

  191. D.K. Lai, M. Bolte, J.A. Johnson, S. Lucatello, A. Heger, S.E. Woosley, Detailed abundances for 28 metal-poor stars: stellar relics in the milky way. Astrophys. J. 681, 1524 (2008)

    ADS  Google Scholar 

  192. L. Mashonkina, N Christlieb, K. Eriksson, The Hamburg/ESO R-process enhanced star survey (HERES). X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star. Astron. Astrophys. 569, A43 (2014)

    Google Scholar 

  193. E.M. Holmbeck et al., Actinide production in the neutron-rich ejecta of a neutron star merger. Astrophys. J. 870, 23 (2019)

    ADS  Google Scholar 

  194. E.M. Holmbeck, A. Frebel, G.C. McLaughlin, M.R. Mumpower, T.M. Sprouse, R. Surman, actinide-rich and actinide-poor r-process-enhanced metal-poor stars do not require separate r-process progenitors. Astrophys. J. 881, 5 (2019)

    Google Scholar 

  195. C.J. Horowitz et al., r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G Nucl. Phys. 46, 083001 (2019)

    Google Scholar 

  196. A.A. Valverde, M. Brodeur, J.A. Clark, D. Lascar, G. Savard, A cooler-buncher for the n =  126 factory at argonne national laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 330 (2020)

    ADS  Google Scholar 

  197. P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, M. Mumpower, Fission barriers at the end of the chart of the nuclides. Phys. Rev. C 91, 024310 (2015)

    ADS  Google Scholar 

  198. X. Wang et al., MeV gamma rays from fission: a distinct signature of actinide production in neutron star mergers. Astrophys. J. 903, L3 (2020)

    ADS  Google Scholar 

  199. S.A. Giuliani, L.M. Robledo, Fission properties of the Barcelona-Catania-Paris-Madrid energy density functional. Phys. Rev. C 88, 054325 (2013)

    ADS  Google Scholar 

  200. Y. Aboussir, J. Pearson, A. Dutta, F. Tondeur, Thomas-Fermi approach to nuclear-mass formula: (IV). The ETFSI-1 mass formula. Nucl. Phys. A 549, 155 (1992)

    Google Scholar 

  201. Y. Aboussir, J.M. Pearson, A.K. Dutta, F Tondeur, Nuclear mass formula via an approximation to the Hartree-Fock method. At. Data Nucl. Data Tables 61, 127 (1995)

    Google Scholar 

  202. M. Arnould, S. Goriely, Microscopic nuclear models for astrophysics: The Brussels BRUSLIB nuclear library and beyond. Nucl. Phys. A 777, 157 (2006)

    ADS  Google Scholar 

  203. W.D. Myers, W.J. Swiatecki, Thomas-Fermi fission barriers. Phys. Rev. C 60 014606 (1999)

    ADS  Google Scholar 

  204. F.K. Thielemann, J. Metzinger, H.V. Klapdor, Beta-delayed fission and neutron emission: Consequences for the astrophysical r-process and the age of the galaxy. Zeit. Phys. A 309, 301 (1983)

    ADS  Google Scholar 

  205. M.R. Mumpower et al., β-delayed fission in r-process nucleosynthesis. Astrophys. J. 869, 14 (2018)

    Google Scholar 

  206. F. Minato, T. Marketin, N. Paar, Beta-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model. Phys. Rev. C 104, 044321 (2021)

    ADS  Google Scholar 

  207. N. Vassh et al., Using excitation-energy dependent fission yields to identify key fissioning nuclei in r-process nucleosynthesis. J. Phys. G Nucl. Phys. 46, 065202 (2019)

    ADS  Google Scholar 

  208. I. V. Panov et al., Neutron-induced astrophysical reaction rates for translead nuclei. Astron. Astrophys. 513 A61, (2010)

    Google Scholar 

  209. A.N. Andreyev K. Nishio, K.H. Schmidt, Nuclear fission: a review of experimental advances and phenomenology. Rep. Prog. Phys. 81, 016301 (2018)

    ADS  MathSciNet  Google Scholar 

  210. I.V. Panov, I.Y. Korneev, G. Martinez-Pinedo, F.K. Thielemann, Influence of spontaneous fission rates on the yields of superheavy elements in the r-process. Astron. Lett. 39, 150 (2013)

    ADS  Google Scholar 

  211. Y.Z. Qian, Neutrino-induced fission and r-process nucleosynthesis. Astrophys. J. 569, L103 (2002)

    ADS  Google Scholar 

  212. E. Kolbe, K. Langanke, G.M. Fuller, Neutrino-induced fission of neutron-rich nuclei. Phys. Rev Lett. 92, 111101 (2004)

    ADS  Google Scholar 

  213. T. Kajino, W Aoki, A. Balantekin, R. Diehl, M. Famiano, G. Mathews, Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys. 107, 109 (2019)

    Google Scholar 

  214. L. Ghys, A.N. Andreyev, S. Antalic, M. Huyse, P. Van Duppen, Empirical description of beta-delayed fission partial half-lives. Phys. Rev. C 91, 044314 (2015)

    ADS  Google Scholar 

  215. I. Panov, E. Kolbe, B. Pfeiffer, T Rauscher, K.L. Kratz, F.K. Thielemann, Calculations of fission rates for r-process nucleosynthesis. Nucl. Phys. A 747, 633 (2005)

    Google Scholar 

  216. T. Kawano, CoH3: the Coupled-Channels and HauserFeshbach Code, in CNR2018: International Workshop on Compound Nucleus and Related Topics, LBNL, Berke- ley CA, USA, Sep. 24-28, 2018, ed. by J. Escher Y. Alhassid, L. A. Bernstein, D. Brown, C. Fröhlich, P. Talou, W. Younes, vol. 254, Springer Proceedings in Physics (2021), p. 28

    Google Scholar 

  217. I. Petermann, K. Langanke, G. Martínez-Pinedo, I.V. Panov, P.G. Reinhard, F.K. Thielemann, Have superheavy elements been produced in nature? Eur. Phys. J. A 48, 122 (2012)

    ADS  Google Scholar 

  218. A.N. Andreyev, M. Huyse, P. Van Duppen, Colloquium: beta-delayed fission of atomic nuclei. Rev. Mod. Phys. 85, 1541 (2013)

    ADS  Google Scholar 

  219. T. Kodama, K. Takahashi, r-process nucleosynthesis and nuclei far from the region of β-stability. Nucl. Phys. A 239, 489 (1975)

    Google Scholar 

  220. S.A. Giuliani, G. Martínez-Pinedo, L.M. Robledo, Fission properties of superheavy nuclei for r-process calculations. Phys. Rev. C 97, 034323 (2018)

    ADS  Google Scholar 

  221. Y. Zhu et al., Californium-254 and kilonova light curves. Astrophys. J. 863, L23 (2018)

    ADS  Google Scholar 

  222. J. Sadhukhan, Microscopic theory for spontaneous fission. Front. Phys. 8, 1 (2020)

    Google Scholar 

  223. C. Xu, Z. Ren, Systematical law of spontaneous fission half-lives of heavy nuclei. Phys. Rev. C 71, 014309 (2005)

    ADS  Google Scholar 

  224. V.I. Zagrebaev, A.V. Karpov, I.N. Mishustin, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in neutron capture processes. Phys. Rev. C 84, 044617 (2011)

    ADS  Google Scholar 

  225. A.V. Karpov, V.I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, W. Greiner, Decay properties and stability of heaviest elements. Int. J. Mod. Phys. E 21, 1250013 (2012)

    ADS  Google Scholar 

  226. S. Rosswog, O. Korobkin, A. Arcones, F.K. Thielemann, T. Piran, The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis. MNRAS 439, 744 (2014)

    Google Scholar 

  227. G.W. Misch, T.M. Sprouse, M.R. Mumpower, Astromers in the radioactive decay of r-process nuclei. Astrophys. J. 913, L2 (2021)

    ADS  Google Scholar 

  228. T.M. Sprouse, G.W. Misch, M.R. Mumpower, Isochronic evolution and the radioactive decay of r-process nuclei. Astrophys. J. 929, 22 (2022)

    ADS  Google Scholar 

  229. S. Goriely, A. Bauswein, H.T. Janka, r-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys. J. 738, L32 (2011)

    Google Scholar 

  230. S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K. Kyutoku, M. Shibata, Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 789, L39 (2014)

    ADS  Google Scholar 

  231. S. Goriely, The fundamental role of fission during r-process nucleosynthesis in neutron star mergers. Eur. Phys. J. A 51, 22 (2015)

    ADS  Google Scholar 

  232. S. Shibagaki, T. Kajino, G.J. Mathews, S. Chiba, S. Nishimura, G. Lorusso, Relative contributions of the weak, main, and fission-recycling r-process. Astrophys. J. 816, 79 (2016)

    ADS  Google Scholar 

  233. J.F. Lemaître, S. Goriely, A. Bauswein, H.T. Janka, Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers. Phys. Rev C 103, 025806 (2021)

    ADS  Google Scholar 

  234. K. Otsuki, G.J. Mathews, T. Kajino, r-Process abundance universality and actinide cosmochronology. New Astron. 8, 767 (2003)

    Google Scholar 

  235. G. Lorusso et al., β-decay half-lives of 110 neutron-rich nuclei across the n = 82 shell gap: implications for the mechanism and universality of the astrophysical r process. Phys. Rev Lett. 114, 192501 (2015)

    Google Scholar 

  236. N. Vassh, M.R. Mumpower, G.C. McLaughlin, T.M. Sprouse, R. Surman, Coproduction of light and heavy r-process elements via fission deposition. Astrophys. J. 896, 28 (2020)

    ADS  Google Scholar 

  237. M. Eichler et al., The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys. J. 808, 30 (2015)

    ADS  Google Scholar 

  238. M. Eichler et al., the impact of fission on r-process calculations. J. Phys. Conf. Series 665, 012054 (2016)

    Google Scholar 

  239. M.R. Mumpower, P. Jaffke, M. Verriere, J. Randrup, Primary fission fragment mass yields across the chart of nuclides. Phys. Rev. C 101, 054607 (2020)

    ADS  Google Scholar 

  240. T.M. Sprouse, M.R. Mumpower, R. Surman, Following nuclei through nucleosynthesis: A novel tracing technique. Phys. Rev. C 104, 015803 (2021)

    ADS  Google Scholar 

  241. J. Beun, G.C. McLaughlin, R. Surman, W.R. Hix, Fission cycling in a supernova r process. Phys. Rev. C 77, 035804 (2008)

    ADS  Google Scholar 

  242. M. Verriere, M.R. Mumpower, Improvements to the macroscopic-microscopic approach of nuclear fission. Phys. Rev. C 103, 034617 (2021)

    ADS  Google Scholar 

  243. J. Sadhukhan, S.A. Giuliani, Z. Matheson, W. Nazarewicz, Efficient method for estimation of fission fragment yields of r-process nuclei. Phys. Rev. C 101, 065803 (2020)

    ADS  Google Scholar 

  244. E. Flynn et al., Nudged elastic band approach to nuclear fission pathways. arXiv e-prints, arXiv:2203.01975 (2022)

    Google Scholar 

  245. C. Ishizuka, K. Tsubakihara, S. Chiba, Y. Sekiguchi, S. Wanajo, Semi-empirical fission model for r-process based on the recent experiments and three-dimensional Langevin approach. Eur. Phys. J. Web Conf. 260, 11013 (2022)

    Google Scholar 

  246. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects. Phys. Rev. C 14, 1832 (1976)

    ADS  Google Scholar 

  247. S. Goriely, S. Hilaire, A. Koning, A. Bauswein, H.T. Janka, Towards predictions of fission probabilities for astrophysics applications. Phys. Procedia 47, 115 (2013)

    ADS  Google Scholar 

  248. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107 (2016)

    ADS  Google Scholar 

  249. J.M. Verbeke, J. Randrup, R. Vogt, Fission reaction event yield algorithm, FREYA for event-byevent simulation of fission. Comp. Phys. Comm. 191, 178 (2015)

    ADS  Google Scholar 

  250. J. Van Dyke, L.A. Bernstein, R. Vogt, Parameter optimization and uncertainty analysis of FREYA for spontaneous fission. Nucl. Instrum. Methods Phys. Res. Sect. A 922, 36 (2019)

    ADS  Google Scholar 

  251. W. Baade, G.R. Burbidge, F. Hoyle, E.M. Burbidge, R.F. Christy, W.A. Fowler, Supernovae and Californium 254. PASP 68, 296 (1956)

    ADS  Google Scholar 

  252. G.R. Burbidge, F. Hoyle, E.M. Burbidge, R.F. Christy, W.A. Fowler, Californium-254 and Supernovae. Phys. Rev. 103, 1145 (1956)

    ADS  Google Scholar 

  253. J.G. Conway, E.K. Hulet, R.J. Morrow, Emission spectrum of californium. J. Opt. Soc. Am. 52, 222 (1962)

    Google Scholar 

  254. M.R. Wu, J. Barnes, G. Martinez-Pinedo, B.D. Metzger, Fingerprints of heavy element nucleosynthesis in the late-time lightcurves of kilonovae. Phys. Rev. Lett. 122, 062701 (2019)

    ADS  Google Scholar 

  255. P. Möller, B. Pfeiffer, K.L. Kratz, New calculations of gross β-decay properties for astrophysical applications: Speeding-up the classical r process. Phys. Rev. C 67, 055802 (2003)

    ADS  Google Scholar 

  256. T. Marketin, L. Huther, G. Martínez-Pinedo, Large-scale evaluation of β-decay rates of r-process nuclei with the inclusion of first-forbidden transitions. Phys. Rev. C 93, 025805 (2016)

    ADS  Google Scholar 

  257. C.W. Thomas, R.W. Perkins, C.L. Simpson, Transuranium elements in the atmosphere, tech. rep. BNWL-1950 (Pt.3) (Battelle Pacific Northwest Labs, Feb. 1975)

    Google Scholar 

  258. O. Korobkin et al., Gamma rays from kilonova: a potential probe of r-process nucleosynthesis. Astrophys. J. 889, 168 (2020)

    ADS  Google Scholar 

  259. P. Ruiz-Lapuente, O. Korobkin, Gamma rays from Kilonovae and the cosmic gamma-ray background. Astrophys. J. 892, 45 (2020)

    ADS  Google Scholar 

  260. R. Billnert, F.J. Hambsch, A. Oberstedt, S. Oberstedt, New prompt spectral gamma-ray data from the reaction 252Cf (sf) and its implication on present evaluated nuclear data files. Phys. Rev. C 87, 024601 (2013)

    ADS  Google Scholar 

  261. L. Qi et al., Statistical study of the prompt-fission γ-ray spectrum for 238U(n,f) in the fast-neutron region. Phys. Rev. C 98, 014612 (2018)

    ADS  Google Scholar 

  262. E. Waxman, E.O. Ofek, D. Kushnir, Late-time kilonova light curves and implications to GW170817. Astrophys. J. 878, 93 (2019)

    ADS  Google Scholar 

  263. J. McEnery et al., All-sky medium energy gamma-ray observatory: exploring the extreme multimessenger universe. Bull. AAS 51 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mumpower, M.R., Talou, P., Vogt, R. (2023). Impact on Science and Technology. In: Talou, P., Vogt, R. (eds) Nuclear Fission. Springer, Cham. https://doi.org/10.1007/978-3-031-14545-2_4

Download citation

Publish with us

Policies and ethics