Skip to main content

Abstract

Pulsating hydroforming is a sheet forming process proposed in the last decade. The numerical simulation of this process requires biaxial stress–strain curves which can be obtained by performing a pulsating hydraulic bulge test. In this study, the input parameters of a pulsating hydraulic bulge test with titanium alloy sheets (Ti-6Al-4 V) are optimised using the Bees Algorithm (BA). The input parameters are amplitude and base pressure; bulge height (h) and minimum thickness (t) at dome apex are outputs. The mathematical modelling of h and the design of an objective function (J) are needed for optimisation. A second-degree polynomial equation is derived for h using curve fitting for three frequencies. Additionally, t is calculated depending on h. The objective function is designed for maximum normalised bulge height and minimum normalised thickness. The results show less thinning at the dome apex with a bulge height similar to that of the traditional monotonous method. Thus, a uniform thickness distribution, which is a critical quality indicator in hydroforming, is obtained with acceptable loss in bulge height. After optimisation, Δt (t-t0) is improved by approximately 9%. The bulge height increases by 15 and 13% in the best experimental case and the BA-optimised results, respectively. Consequently, the ductility of Ti-6Al-4 V sheet is increased, and the input parameters are optimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li FQ, Mo JH, Li JJ, Huang L, Zhou HY (2013) Formability of Ti–6Al–4V titanium alloy sheet in magnetic pulse bulging. Mater Des 52:337–344

    Article  Google Scholar 

  2. Liu G, Wu Y, Wang JL, Zhang WD (2014) Progress on high pressure pneumatic forming and warm hydroforming of Titanium and Magnesium alloy tubular components. Mater Sci Forum 783:2456–2461

    Article  Google Scholar 

  3. Hama T, Asakawa M, Fukiharu H, Makinouchi A (2004) Simulation of hammering hydroforming by static explicit FEM. ISIJ Int 44(1):123–128

    Article  Google Scholar 

  4. Mori K, Maeno T, Maki S (2007) Mechanism of improvement of formability in pulsating hydroforming of tubes. Int J Mach Tools Manuf 47(6):978–984

    Article  Google Scholar 

  5. Loh-Mousavi M, Mori K, Hayashi K, Maki S, Bakhshi M (2007) 3-D finite element simulation of pulsating T-shape hydroforming of tubes. Key Eng Mater 340:353–358

    Article  Google Scholar 

  6. Loh-Mousavi M, Bakhshi-Jooybari M, Mori KI, Hyashi K (2008) Improvement of formability in T-shape hydroforming of tubes by pulsating pressure. Proc Instit Mech Eng Part B: J Eng Manuf 222(9):1139–1146

    Article  Google Scholar 

  7. Yang LF, Chen FJ (2009) Investigation on the formability of a tube in pulsating hydroforming. Mater Sci Forum 628:617–622

    Article  Google Scholar 

  8. Zhang S, Yuan A, Wang B, Zhang H, Wang Z (2009) Influence of loading path on formability of 304 stainless steel tubes. Sci China Ser E: Technol Sci 52(8):2263–2268

    Article  Google Scholar 

  9. Xu Y, Zhang SH, Zhu QX, Cheng M, Song HW, Zhang GJ (2013) Effect of process parameters on hydroforming of stainless steel tubular components with rectangular section. Mater Sci Forum 749:67–74

    Article  Google Scholar 

  10. Xu Y, Zhang S, Cheng M, Song H, Zhang X (2014) Application of pulsating hydroforming in manufacture of engine cradle of austenitic stainless steel. Procedia Eng 81:2205–2210

    Article  Google Scholar 

  11. Ashrafi A, Khalili K (2016) Investigation on the effects of process parameters in pulsating hydroforming using Taguchi method. Proc Instit Mech Eng Part B: J Eng Manuf 230(7):1203–1212

    Article  Google Scholar 

  12. Yang L, Wu C, He Y (2016) Dynamic frictional characteristics for the pulsating hydroforming of tubes. Int J Adv Manuf Technol 86(1):347–357

    Article  Google Scholar 

  13. Ma J, Yang L, Liu J, Chen Z, He Y (2021) Evaluating the quality of assembled camshafts under pulsating hydroforming. J Manuf Process 61:69–82

    Article  Google Scholar 

  14. Yang L, Tang D, He Y (2017) Describing tube formability during pulsating hydroforming using forming limit diagrams. J Strain Anal Eng Des 52(4):249–257

    Article  Google Scholar 

  15. Hu G, Pan C (2021) Investigation on deformation behavior of magnesium alloy sheet AZ31B in pulsating hydroforming. Proc Instit Mech Eng Part B: J Eng Manuf 235(1–2):198–206

    Article  Google Scholar 

  16. Mirzaali M, Seyedkashi SMH, Liaghat GH, Naeini HM, Moon YH (2012) Application of simulated annealing method to pressure and force loading optimisation in tube hydroforming process. Int J Mech Sci 55(1):78–84

    Article  Google Scholar 

  17. Kadkhodayan M, Moghadam AE (2013) Optimisation of load paths in X-and Y-shaped hydroforming. IntJ Mater Form 6(1):75–91

    Article  Google Scholar 

  18. Hashemi A, Hoseinpour-Gollo M, Seyedkashi SH, Pourkamali-Anaraki A (2017) A new simulation-based metaheuristic approach in optimisation of bilayer composite sheet hydroforming. J Braz Soc Mech Sci Eng 39(10):4011–4020

    Article  Google Scholar 

  19. Manabe KI, Chen X, Kobayashi D, Tada K (2014) Development of in-process fuzzy control system for T-shape tube hydroforming. Procedia Eng 81:2518–2523

    Article  Google Scholar 

  20. Teng B, Li K, Yuan S (2013) Optimisation of loading path in hydroforming T-shape using fuzzy control algorithm. Int J Adv Manuf Technol 69(5–8):1079–1086

    Article  Google Scholar 

  21. Yaghoobi A, Bakhshi-Jooybari M, Gorji A, Baseri H (2016) Application of adaptive neuro fuzzy inference system and genetic algorithm for pressure path optimisation in sheet hydroforming process. Int J Adv Manuf Technol 86(9):2667–2677

    Article  Google Scholar 

  22. Öztürk E, Türköz M, Halkacı HS, Koç M (2017) Determination of optimal loading profiles in hydromechanical deep drawing process using integrated adaptive finite element analysis and fuzzy control approach. Int J Adv Manuf Technol 88(9–12):2443–2459

    Article  Google Scholar 

  23. Feng YY, Luo ZA, Su HL, Wu QL (2018) Research on the optimisation mechanism of loading path in hydroforming process. Int J Adv Manuf Technol 94(9):4125–4137

    Article  Google Scholar 

  24. Chebbah MS, Lebaal N (2020) Tube hydroforming optimisation using a surrogate modeling approach and genetic algorithm. Mech Adv Mater Struct 27(6):515–524

    Article  Google Scholar 

  25. Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. Intell Prod Mach Syst 454–459

    Google Scholar 

  26. Alharthi H, Hazra S, Alghamdi A, Banabic D, Dashwood R (2018) Determination of the yield loci of four sheet materials (AA6111-T4, AC600, DX54D+ Z, and H220BD+ Z) by using uniaxial tensile and hydraulic bulge tests. Int J Adv Manuf Technol 98(5):1307–1319

    Article  Google Scholar 

  27. Giuliano G (2011) Superplastic forming of advanced metallic materials: methods and applications. Elsevier

    Google Scholar 

  28. Hill RC (1950) A theory of the plastic bulging of a metal diaphragm by lateral pressure. London, Edinburgh, Dublin Philosophical Mag J Sci 41(322):1133–1142

    Article  MathSciNet  MATH  Google Scholar 

  29. Lăzărescu L, Comşa DS, Banabic D (2011) Validation of a new methodology for determination of stress–strain curves through bulge test. Acta Technica Napocensis-Series: Appl Math Mech Eng 54(2)

    Google Scholar 

  30. Baronti L, Castellani M, Pham DT (2020) An analysis of the search mechanisms of the bees algorithm. Swarm Evol Comput 59:100746

    Article  Google Scholar 

  31. Pham DT, Kalyoncu M (2009) Optimisation of a fuzzy logic controller for a flexible single-link robot arm using the Bees Algorithm. In: 7th IEEE international conference on industrial informatics

    Google Scholar 

  32. Fahmy AA, Kalyoncu M, Castellani M (2012) Automatic design of control systems for robot manipulators using the bees algorithm. Proc Instit Mech Eng Part I: J Syst Control Eng 226(4):497–508

    Google Scholar 

  33. Şen MA, Tinkir M, Kalyoncu M (2018) Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm. J Low Frequency Noise, Vib Active Control 37(1):107–127

    Article  Google Scholar 

  34. Öztürk O, Kalyoncu M, Ünüvar A (2018) Multi objective optimisation of cutting parameters in a single pass turning operation using the bees algorithm. In: 1st international conference on advances in mechanical and mechatronics engineering

    Google Scholar 

  35. Bilgic HH, Sen MA, Yapici A, Yavuz H, Kalyoncu M (2021) Meta-heuristic tuning of the LQR weighting matrices using various objective functions on an experimental flexible arm under the effects of disturbance. Arab J Sci Eng 46(8):7323–7336

    Article  Google Scholar 

  36. Onder A, Incebay O, Sen MA, Yapici R, Kalyoncu M (2021) Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD. Int J Artif Organs 44(10):765–772

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Öztürk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Öztürk, O., Şen, M.A., Kalyoncu, M., Halkacı, H.S. (2023). An Application of the Bees Algorithm to Pulsating Hydroforming. In: Pham, D.T., Hartono, N. (eds) Intelligent Production and Manufacturing Optimisation—The Bees Algorithm Approach. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-14537-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14537-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14536-0

  • Online ISBN: 978-3-031-14537-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics