Skip to main content

Human Radiation Dosimetry from Imaging: Guidance for Therapy

  • Chapter
  • First Online:
Radiopharmaceuticals in the Management of Leptomeningeal Metastasis
  • 125 Accesses

Abstract

Internal dosimetry of intrathecal radiopharmaceutical therapy employs quantitative imaging to provide its input data. The MIRD schema is the most widely used approach. It relies upon the estimation of the number of disintegrations that take place in a source and the fraction of the released energy from each disintegration that is absorbed in a target. Both single photon emitters and positron emitters have been used. Whether imaging by planar scintigraphy, SPECT/CT, PET/CT, or PET/MR, a variety of corrections must be employed to make the images quantitative. Some are common, such as attenuation correction, while others are specific to the modality or even to the emission properties of a particular radionuclide. The images are taken at propitious times during the uptake and clearance of the radiopharmaceutical, and regions within the images are analyzed to estimate time–activity curves for the sources. The area under a time–activity curve yields the number of disintegrations that occur within the source region. Those disintegrations can then be related to the dose imparted to a target by standard internal dosimetry models or by specialized calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  2. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. Revised edition. New York: Society of Nuclear Medicine; 1991.

    Google Scholar 

  3. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.

    Article  CAS  PubMed  Google Scholar 

  4. Eckerman KF, Endo A. MIRD radionuclide data and decay schemes. 2nd ed. Reston, VA: Society of Nuclear Medicine; 2008.

    Google Scholar 

  5. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier Saunders; 2012.

    Google Scholar 

  6. Ficaro EP, Fessler JA, Rogers WL, Schwaiger M. Comparison of americium-241 and technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med. 1994;35(4):652–63. [cited 2020 Jan 23]. http://jnm.snmjournals.org/content/35/4/652.long.

    CAS  PubMed  Google Scholar 

  7. Rong X, Du Y, Frey EC. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol. 2012;57(12):3711–25. https://doi.org/10.1088/0031-9155/57/12/3711.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clarke LP, Cullom SJ, Shaw R, Reece C, Penney BC, King MA, et al. Bremsstrahlung imaging using the gamma camera: factors affecting attenuation. J Nucl Med. 1992;33(1):161–6. http://jnm.snmjournals.org/content/33/1/161.short.

    CAS  PubMed  Google Scholar 

  9. Macey DJ, Grant EJ, Bayouth JE, Giap HB, Danna SJ, Sirisriro R, et al. Improved conjugate view quantitation of I-131 by subtraction of scatter and septal penetration events with a triple energy window method. Med Phys. 1995;22(10):1637–43. [cited 2019 Aug 31]. https://doi.org/10.1118/1.597423.

    Article  CAS  PubMed  Google Scholar 

  10. Holstensson M, Hindorf C, Ljungberg M, Partridge M, Flux GD. Optimization of energy-window settings for scatter correction in quantitative 111In imaging: comparison of measurements and Monte Carlo simulations. Cancer Biother Radiopharm. 2007;22(1):136–42. [cited 2019 Aug 31]. https://doi.org/10.1089/cbr.2007.307.

    Article  CAS  PubMed  Google Scholar 

  11. Penney BC, Rajeevan N, Bushe KS, Hademenos G, King MA, de Vries DJ, et al. A scatter reduction method for In-111 scintigrams using five energy windows. In: Conference record of the 1991 IEEE nuclear science symposium and medical imaging conference, vol. 3; 1991. p. 1866–73.

    Google Scholar 

  12. Hesterman JY, Kost SD, Holt RW, Dobson H, Verma A, Mozley PD. Three-dimensional dosimetry for radiation safety estimates from intrathecal administration. J Nucl Med. 2017;58(10):1672–8. http://jnm.snmjournals.org/content/58/10/1672.abstract.

    Article  CAS  PubMed  Google Scholar 

  13. Wong FC, Kim EE. Nuclear medicine in neuro-oncology. In: Levin VA, editor. Cancer in the nervous system. 2nd ed. New York: Oxford University Press; 2002. p. 60–72. [cited 2019 Aug 18]. https://www.soc-neuro-onc.org/UploadedFiles/Levin/Levin_ch02_p60-72.pdf.

    Google Scholar 

  14. Larson SM, Carrasquillo JA, Cheung N-KV, Press OW. Radioimmunotherapy of human tumors. Nat Rev Cancer. 2015;15:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stabin MG, Evans J. The radiation dosimetry of intrathecally administered radionuclides. In: Schalfke-Stelson AT, Stabin MG, Sparks RB, editors. Proceedings of the sixth international radiopharmaceutical dosimetry symposium. Gatlinburg, TN: Oak Ridge Associated Universities; 1999. p. 500–12.

    Google Scholar 

  16. Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):10. [cited 2019 Sep 8]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098993/.

    Article  PubMed Central  Google Scholar 

  17. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. Eur J Nucl Med Mol Imaging Phys. 2016;3:8. [cited 2019 Sep 8]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894854/.

    Google Scholar 

  18. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7. http://jnm.snmjournals.org/cgi/content/abstract/46/6/1023.

    PubMed  Google Scholar 

  19. International Commission on Radiological Protection. ICRP publication 89: basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2002;32(3–4):1–265. [cited 2018 Apr 5]. http://www.icrp.org/publication.asp?id=icrp%20publication%2089.

    Google Scholar 

  20. Busse N, Erwin W, Pan T. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications. Med Phys. 2013;40(12):122503 . [cited 2019 Jun 10]. https://doi.org/10.1118/1.4830433.

    Article  PubMed  Google Scholar 

  21. Bouchet LG, Bolch WE, Weber DA, Atkins HL, Poston JW Sr. MIRD pamphlet no. 15: radionuclide S values in a revised dosimetric model of the adult head and brain. J Nucl Med. 1999;40(3):62S–101. [cited 2019 Sep 14]. https://www.snmmi.org/files/docs/MIRD15.pdf.

    CAS  PubMed  Google Scholar 

  22. Villoing D, McMillan D, Kim KP, Park IL, Lee A-K, Choi H, et al. Korean pediatric and adult head computational phantoms and application to photon specific absorbed fraction calculations. Radiat Prot Dosimetry. 2017;176(3):294–301. [cited 2019 Sep 14]. https://doi.org/10.1093/rpd/ncx009.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fallahpoor M, Abbasi M, Parach AA, Bitarafan Rajabi A, Kalantari F. Image-based versus atlas-based patient-specific S-value assessment for Samarium-153 EDTMP cancer palliative care: a short study. Iran J Nucl Med. 2018;26(2):76–81. http://irjnm.tums.ac.ir/article_31621.html.

    CAS  Google Scholar 

  24. Johansson L, Nosslin B. Dosimetry of intrathecally administered radiopharmaceuticals. In: Watson EE, Schalfke-Stelson AT, editors. Proceedings of the fifth international radiopharmaceutical dosimetry symposium. Oak Ridge, TN: Oak Ridge Associated Universities; 1992. p. 188–210. [cited 2019 Sep 15]. https://inis.iaea.org/collection/NCLCollectionStore/_Public/23/071/23071441.pdf?r=1&r=1.

    Google Scholar 

  25. Reynoso-Mejía CA, Delfin-Loya A, Kerik-Rotenberg N, Moranchel M. S-values of cortical and subcortical structures calculated from a voxelized head phantom. AIP Conf Proc. 2019;2090(1):030006. [cited 2019 Sep 15]. https://aip.scitation.org/doi/abs/10.1063/1.5095901.

    Article  Google Scholar 

  26. Wong F, Sparks R. Radiation dosimetry models of intralumbar injection of 14 radiopharmaceuticals. J Nucl Med. 2009;50(Suppl 2):1871. http://jnm.snmjournals.org/content/50/supplement_2/1871.abstract.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Wendt III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendt, R.E. (2022). Human Radiation Dosimetry from Imaging: Guidance for Therapy. In: Wong, F.C. (eds) Radiopharmaceuticals in the Management of Leptomeningeal Metastasis. Springer, Cham. https://doi.org/10.1007/978-3-031-14291-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14291-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14290-1

  • Online ISBN: 978-3-031-14291-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics