Skip to main content

Blood Flow and Respiratory Gas Exchange in the Human Placenta at Term: A Data Update

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XLIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1395))

Abstract

Reliable measurements using modern techniques and consensus in experimental design have enabled the assessment of novel data sets for normal maternal and foetal respiratory physiology at term. These data sets include (a) principal factors affecting placental gas transfer, e.g., maternal blood flow through the intervillous space (IVS) (500 mL/min) and foeto-placental blood flow (480 mL/min), and (b) O2, CO2 and pH levels in the materno-placental and foeto-placental circulation. According to these data, the foetus is adapted to hypoxaemic hypoxia. Despite flat oxygen partial pressure (pO2) gradients between the blood of the IVS and the umbilical arteries of the foetus, adequate O2 delivery to the foetus is maintained by the higher O2 affinity of the foetal blood, high foetal haemoglobin (HbF) concentrations, the Bohr effect, the double-Bohr effect, and high foeto-placental (=umbilical) blood flow. Again, despite flat gradients, adequate CO2 removal from the foetus is maintained by a high diffusion capacity, high foeto-placental blood flow, the Haldane effect, and the double-Haldane effect. Placental respiratory gas exchange is perfusion-limited, rather than diffusion-limited, i.e., O2 uptake depends on O2 delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutton MSM, Theard MA, Bhatia SJS et al (1990) Changes in placental blood flow in the normal human fetus with gestational age. Pediatr Res 28:383–387

    Article  CAS  PubMed  Google Scholar 

  2. Kiserud T (2005) Physiology of the fetal circulation. Sem Fetal Neonat Med 10:493–503

    Article  Google Scholar 

  3. Acharya G, Wilsgaard T, Berntsen GKR et al (2005) Doppler derived umbilical artery absolute velocities and their relationship to fetoplacental volume blood flow: a longitudinal study. Ultrasound Obstet Gynecol 25:444–453

    Article  CAS  PubMed  Google Scholar 

  4. Seed M, van Amerom JFP, Yoo SH et al (2012) Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson 14:79

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prsa M, Sun L, van Ameron J et al (2014) Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging 7:663–670

    Article  PubMed  Google Scholar 

  6. Acharya G, Sonesson SE, Flo K et al (2016) Hemodynamic aspects of normal human fetoplacental (umbilical) circulation. Acta Obstet Gynecol Scand 95:672–682

    Article  PubMed  Google Scholar 

  7. Krishnamurthy U, Yadav BK, Jella PK et al (2018) Quantitative flow imaging in the human umbilical vessels in-utero using non-gated 2D phase contrast MRI. J Magn Reson Imaging 48:283–289

    Article  PubMed  Google Scholar 

  8. Francis ST, Duncan KR, Moore RJ et al (1998) Non-invasive mapping of placental perfusion. Lancet 351:1397–1399

    Article  CAS  PubMed  Google Scholar 

  9. Welsh AW, Fisk NM (2001) Regional variation in power Doppler perfusion measurements within normal placenta. Ultrasound Obstet Gynecol 18(Suppl 1):13

    Google Scholar 

  10. Couper S, Clark A, Thompson JMD et al (2021) The effects of maternal position, in late gestation pregnancy, on placental blood flow and oxygenation: an MRI study. J Physiol 599:1901–1915

    Article  CAS  PubMed  Google Scholar 

  11. Sørensen A, Peters D, Fründ E et al (2013) Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI). Ultrasound Obstet Gynecol 42:310–314

    Article  PubMed  Google Scholar 

  12. Hutter J, Harteveld JLH et al (2020) Perfusion and apparent oxygenation in the human placenta. Magn Reson Med 83:549–560

    Article  PubMed  Google Scholar 

  13. Blickstein I, Green T (2007) Umbilical cord blood gases. Clin Perinatol 34:451–459

    Article  PubMed  Google Scholar 

  14. Armstrong L, Stenson BJ (2007) Use of umbilical cord blood gas analysis in the assessment of the newborn. Arch Dis Child Fetal Neonatal Ed 92(6):F430–F434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiberg N, Källen K, Olofsson P (2008) Delayed umbilical cord clamping at birth has effects on arterial and venous blood gases and lactate concentrations. BJOG 115:697–703

    Article  CAS  PubMed  Google Scholar 

  16. Acharya G, Sitras V (2009) Oxygen uptake of the human fetus at term. Acta Obstet Gynecol 88:104–109

    Article  Google Scholar 

  17. Kotaska K, Urinovska R, Klapkova et al (2010) Re-evaluation of cord blood arterial and venous reference ranges for pH, pO2, pCO2, according to spontaneous or cesarean delivery. J Clin Lab Anal 24:300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Higgins C (2014) Umbilical-cord blood gas analysis. Acutecaretesting.org

  19. Carter AM (2015) Placental gas exchange and the oxygen supply to the fetus. Compr Physiol 5:1381–1403

    Article  PubMed  Google Scholar 

  20. Manomayangkul K, Siriussawakul A et al (2016) Reference values for umbilical cord blood gases of newborns delivered by elective cesarean section. J Med Assoc Thail 99:611–617

    Google Scholar 

  21. Nye GA, Ingram E, Johnstone ED et al (2018) Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol 596:5523–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saini BS, Morrison JL, Seed M (2020) Gas exchange across the placenta. In: Lapinsky S, Plante L (eds) Respiratory disease in pregnancy. Cambridge University Press, Cambridge/New York

    Google Scholar 

  23. Saneh H, Mendez MD, Srinivasan VN (2021) Cord blood gas. In: StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  24. De Paco C, Florido J, Garrido MC et al (2011) Umbilical cord blood acid-base and gas analysis after early versus delayed cord clamping in neonates at term. Arch Gynecol Obstet 283:1011–1014

    Article  PubMed  Google Scholar 

  25. Butterwegge M, Kappen R, Rath W (2012) Changes in umbilical cord blood acid-base status after delivery in dependence on time interval- a continuing forensic problem. Z Geburtsh Neonatol 216:253–258

    CAS  Google Scholar 

  26. Omo-Aghoja L (2014) Maternal and fetal acid-base chemistry: a major determinant of perinatal outcome. Ann Med Health Sci Res 4:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cantu J, Szychowski JM, Li X et al (2014) Predicting fetal acidemia using umbilical venous cord gas parameters. Obstet Gynecol 124:926–932

    Article  PubMed  Google Scholar 

  28. McNamara E-KA (2017) Oxygen transport and delivery. Fetal Neonat Physiol 1:724–737.e2

    Article  Google Scholar 

  29. Zaigham M, Källen K, Olofsson (2019) Gestational age-related reference values for Apgar score and umbilical cord arterial and venous pH in preterm and term newborns. Acta Obstet Gynecol Scand 98:1618–1623

    Article  PubMed  Google Scholar 

  30. Saini BS, Portnoy DJRT et al (2020) Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. J Physiol 598:3259–3281

    Article  CAS  PubMed  Google Scholar 

  31. Melzer K, Kayser B, Schutz Y (2014) Respiratory quotient evolution during normal pregnancy: what nutritional or clinical information can we get out of it? Eur J Obstet Gynecol Reprod Biol 176:5–9

    Article  PubMed  Google Scholar 

  32. Grocott MPW, Martin DS, Levett DZH et al (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 360:140–149

    Article  CAS  PubMed  Google Scholar 

  33. Cobb AB, Levett DZH, Mitchell K et al (2021) Physiological responses during ascent to high altitude and the incidence of acute mountain sickness. Physiol Rep 9:e14809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank Anett Lange for her help in preparation of this chapter, and Professor A. Graham Pockley, Nottingham Trent University (UK), for linguistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vaupel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaupel, P., Multhoff, G. (2022). Blood Flow and Respiratory Gas Exchange in the Human Placenta at Term: A Data Update. In: Scholkmann, F., LaManna, J., Wolf, U. (eds) Oxygen Transport to Tissue XLIII. Advances in Experimental Medicine and Biology, vol 1395. Springer, Cham. https://doi.org/10.1007/978-3-031-14190-4_62

Download citation

Publish with us

Policies and ethics