Skip to main content

Potential of Herbal Drugs for Treatment of Tuberculosis

  • Chapter
  • First Online:
Tubercular Drug Delivery Systems
  • 152 Accesses

Abstract

Worldwide, TB is estimated as the 13th leading cause of death and the second leading infectious disease after COVID-19. In 2020, an estimated 10 million people fell ill with tuberculosis (TB) worldwide. The current first-line drug treatment against tuberculosis has various limitations, of poor efficiency in complicated TB cases, side effects and lengthy drug treatment regime. Antibiotics like rifampicin, ethambutol, isoniazid, and pyrazinamide are currently used to treat tuberculosis, but multiple drug resistance is a major problem associated with it. Many traditional practices and medicinal plants have been in use as adjuvant for the treatment and management of TB.

This chapter gives an overview of medicinal plants and some of the bioactives found to be reported with a prominent effect against TB. The mechanism behind the interaction of anti-TB drugs and herbal constituents and their novel delivery approaches are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arditti FD, Rabinkov A, Miron T, Reisner Y, Berrebi A, Wilchek M, Mirelman D. Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate. Mol Cancer Ther. 2005;4(2):325–32.

    CAS  PubMed  Google Scholar 

  2. Adami AJ, Cervantes JL. The microbiome at pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis. 2015;95(6):651–8.

    PubMed  Google Scholar 

  3. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1(2):125–9.

    CAS  PubMed  Google Scholar 

  4. Arya V. A review on anti-tubercular plants. Int J Pharmtechnol Res. 2011;3:872–80.

    Google Scholar 

  5. Abedinzadeh M, Gaeini M, Sardari S. Natural antimicrobial peptides against Mycobacterium tuberculosis. J Antimicrob Chemother. 2015;70(5):1285–9.

    CAS  PubMed  Google Scholar 

  6. Amit J, Sunil C, Vimal K, Anupam P. Phytosomes: a revolution in herbal drugs. The pharma review. New Delhi: Kongposh Publications Pvt. Ltd; 2008. p. 24–8.

    Google Scholar 

  7. Babalola IT, Adelakun EA. Compendium of medicinal plants for the ethnotherapeutic management of tuberculosis and other respiratory diseases. J Pharmacogn Phytochem. 2018;7(3):1983–94.

    Google Scholar 

  8. Badavenkatappa SG, Peraman R. In vitro antitubercular, anticancer activities and IL-10 expression in HCT-116 cells of Tinospora sinensis (Lour.) Merr. leaves extract. Nat Prod Res. 2021;35(22):4669–74.

    CAS  PubMed  Google Scholar 

  9. Borges-Argáez R, Canche-Chay CI, Peña-Rodríguez LM, Said-Fernández S, Molina-Salinas GM. Antimicrobial activity of Diospyros anisandra. Fitoterapia. 2007;78(5):370–2.

    PubMed  Google Scholar 

  10. Barnes CC, Smalley MK, Manfredi KP, Kindscher K, Loring H, Sheeley DM. Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla. J Nat Prod. 2003;66(11):1457–62.

    CAS  PubMed  Google Scholar 

  11. Choudhary N, Khajuria V, Gillani ZH, Tandon VR, Arora E. Effect of Carum carvi, a herbal bioenhancer on pharmacokinetics of antitubercular drugs: a study in healthy human volunteers. Perspect Clin Res. 2014;5(2):80.

    PubMed  PubMed Central  Google Scholar 

  12. Chen JJ, Wang TC, Yang CK, Liao HR, Sung PJ, Chen IS, Cheng MJ, Peng CF, Chen JF. New pterosin sesquiterpenes and antitubercular constituents from Pteris ensiformis. Chem Biodivers. 2013;10(10):1903–8.

    CAS  PubMed  Google Scholar 

  13. Cho JJ, Cho CL, Kao CL, Chen CM, Tseng CN, Lee YZ, Liao LJ, Hong YR. Crude aqueous extracts of Pluchea indica (L.) Less. inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death. BMC Complement Altern Med. 2012;12(1):1–1.

    Google Scholar 

  14. Dini C, Fabbri A, Geraci A. The potential role of garlic (Allium sativum) against the multi-drug resistant tuberculosis pandemic: a review. Ann Ist Super Sanita. 2011;47:465–73.

    PubMed  Google Scholar 

  15. Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010;4(7):27.

    PubMed  PubMed Central  Google Scholar 

  16. Eram S, Mujahid M, Bagga P, Ahsan F, Rahman MA. Hepatoprotective evaluation of Galanga (Alpinia Officinarum) rhizome extract against antitubercular drugs induced hepatotoxicity in rats. Int J Geogr Inf Syst. 2020;26(2):113–25.

    Google Scholar 

  17. Egharevba OH, Oladosu P, Okhale ES, Ibrahim I, Folashade KO, Okwute KS, Okogun IJ. Preliminary anti-tuberculosis screening of two Nigerian Laggera species (Laggera pterodonta and Laggera aurita). J Med Plant Res. 2010;4(12):1235–7.

    Google Scholar 

  18. Block E, John Dane A, Thomas S, Cody RB. Applications of direct analysis in real time mass spectrometry (DART-MS) in allium chemistry. 2-Propenesulfenic and 2-Propenesulfinic acids, diallyl trisulfane S-oxide, and other reactive sulfur compounds from crushed AnkGarlic and other alliums. J Agric Food Chem. 2010;58(8):4617–25.

    CAS  PubMed  Google Scholar 

  19. Gangwar M, Goel RK, Nath G. Mallotus philippinensis Muell. Arg (Euphorbiaceae): ethnopharmacology and phytochemistry review. Biomed Res Int. 2014;2014:213973.

    PubMed  PubMed Central  Google Scholar 

  20. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, Chauhan SV. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res. 2010;131(6):809.

    PubMed  Google Scholar 

  21. Godipurge SS, Biradar JS, Mahurkar N. Phytochemical and pharmacological evaluation of Acalypha indica Linn in experimental animal models. Int J Pharmacogn Phytochem Res. 2014;6(4):973–9.

    Google Scholar 

  22. Gowrish A, Vagdevi H, Rajashekar H. In vitro antioxidant and antitubercular activity of Leucas marrubioides Desf. root extracts. J Appl Pharm Sci. 2015;5(02):137–42.

    Google Scholar 

  23. Gutierrez-Lugo MT, Wang Y, Franzblau SG, Suarez E, Timmermann BN. Antitubercular sterols from Thalia multiflora Horkel ex Koernicke. Phytother Res. 2005;19(10):876–80.

    CAS  PubMed  Google Scholar 

  24. Gu JQ, Wang Y, Franzblau SG, Montenegro G, Timmermann BN. Constituents of Quinchamalium majus with potential antitubercular activity. Z Naturforsch C. 2004a;59(11–12):797–802.

    CAS  Google Scholar 

  25. Gu JQ, Wang Y, Franzblau SG, Montenegro G, Timmermann BN. Constituents of Senecio chionophilus with potential antitubercular activity. J Nat Prod. 2004b;67(9):1483–7.

    CAS  PubMed  Google Scholar 

  26. Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K, Kumar JK, Rahuja N, Luqman S, Sisodia BS, Saikia D, Darokar MP. Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol. 2008;116(2):377–80.

    PubMed  Google Scholar 

  27. NabiQazi G, Bedi KL, Johri RK, Tikoo MK, Kumar A, Sharma SC, Abdullah ST, Suri OP, Gupta BD, Suri KA, Satti NK, Khajuria RK, Singh S, Khajuria A, KrishanKapahi B. Bioavailability/bioefficacy enhancing activity of cuminmcyminum and extracts and fractions thereof. U.S. Patent US 7514105; 2009.

    Google Scholar 

  28. Green E, Obi LC, Samie A, Bessong PO, Ndip RN. Characterization of n-Hexane sub-fraction of Bridelia micrantha (Berth) and its antimycobacterium activity. BMC Complement Altern Med. 2011;11(1):1–5.

    Google Scholar 

  29. Grange JM, Snell NJ. Activity of bromhexine and ambroxol, semi-synthetic derivatives of vasicine from the Indian shrub Adhatoda vasica, against mycobacterium tuberculosis in vitro. J Ethnopharmacol. 1996;50(1):49–53.

    CAS  PubMed  Google Scholar 

  30. Gautam R, Saklani A, Jachak SM. Indian medicinal plants as a source of antimycobacterial agents. J Ethnopharmacol. 2007;110(2):200–34.

    CAS  PubMed  Google Scholar 

  31. Pamela HB. Tuberculosis pathogenesis and transmission. Oakland Country Michiga Health Division; 2016. p. 6, 8,1 2, 14, 20–28

    Google Scholar 

  32. Hunter RL, Actor JK, Hwang SA, Karev V, Jagannath C. Pathogenesis of post primary tuberculosis: immunity and hypersensitivity in the development of cavities. Ann Clin Lab Sci. 2014;44(4):365–87.

    PubMed  Google Scholar 

  33. Habbu PV, Mahadevan KM, Shastry RA. Antimicrobial activity of the flavonoid sulphates and other fractions of Argyreia speciosa. Indian J Exp Biol. 2009;47:121–8.

    CAS  PubMed  Google Scholar 

  34. Hong Q, Minter DE, Franzblau SG, Arfan M, Amin H, Reinecke MG. Anti-tuberculosis compounds from Mallotus philippinensis. Nat Prod Commun. 2010;5(2):211–7. https://doi.org/10.1177/1934578X1000500208.

    Article  CAS  PubMed  Google Scholar 

  35. Hussain T, Gupta RK, Sweety K, Khan MS, Hussain MS, Arif MD, Hussain A, Faiyazuddin MD, Rao CV. Evaluation of antihepatotoxic potential of Solanum xanthocarpum fruit extract against antitubercular drugs induced hepatopathy in experimental rodents. Asian Pac J Trop Biomed. 2012;2(6):454–60.

    PubMed  PubMed Central  Google Scholar 

  36. Hussain K, Ismail Z, Sadikun A, Ibrahim P. Antioxidant, anti-TB activities, phenolic and amide contents of standardised extracts of Piper sarmentosum Roxb. Nat Prod Res. 2009;23(3):238–49.

    CAS  PubMed  Google Scholar 

  37. Hema MR, Ramaiah M, Vaidya VP, Shivakumar BS, Begum A. Evaluation of antidiabetic and antitubercular activities of methanol extract of root bark of Artocarpus integrifolia. Res J Pharm, Biol Chem Sci. 2017;2(4):886–93.

    Google Scholar 

  38. Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS, de Almeida AL, Baldin VP, Nakamura CV, Siqueira VLD, Scodro RB, Cardoso RF. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis. 2018;111:35–40.

    CAS  PubMed  Google Scholar 

  39. Higuchi CT, Pavan FR, Leite CQ, Sannomiya M, Vilegas W, Leite SR, Sacramento LV, Sato DN. Triterpenes and antitubercular activity of Byrsonima crassa. Química nova. 2008;31:1719–21.

    CAS  Google Scholar 

  40. Jyoti MA, Nam KW, Jang WS, Kim YH, Kim SK, Lee BE, Song HY. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis. J Infect Chemother. 2016;22(4):200–8.

    CAS  PubMed  Google Scholar 

  41. Jaya S, Siddheswaran P, Kumar KS, Karthiyayini T. Anti-tubercular activity of fruits of Prunus armeniaca (L.). Int J Pharm Bio Sci. 2010;1(2):1885.

    Google Scholar 

  42. Kurandawad JM, Lakshman HC. Diversity of the endophytic fungi isolated from Acalypha indica Linn – a promising medicinal plant. Int J Sci Res Publ. 2014;4:2250–3153.

    Google Scholar 

  43. Kumar M, Singh SK, Singh PP, Singh VK, Rai AC, Srivastava AK, Shukla L, Kesawat MS, Kumar Jaiswal A, Chung SM, Kumar A. Potential anti-Mycobacterium tuberculosis activity of plant secondary metabolites: insight with molecular docking interactions. Antioxidants. 2021;10(12):1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar SS, Kumar CV, Vardhan AV. Hepatoprotective activity of Acalypha indica linn against thioacetamide induced toxicity. Int J Pharm Sci. 2013;5:356–9.

    Google Scholar 

  45. Kaufman S. Introduction. Semin Immunol. 2014;26(6):429–30.

    Google Scholar 

  46. Lakshmanan D, Werngren J, Jose L, Suja KP, Nair MS, Varma RL, Mundayoor S, Hoffner S, Kumar RA. Ethyl p-methoxycinnamate isolated from a traditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Mycobacterium tuberculosis in vitro. Fitoterapia. 2011;82(5):757–61.

    CAS  PubMed  Google Scholar 

  47. Lall N, Meyer JJ. Inhibition of drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis by diospyrin, isolated from Euclea natalensis. J Ethnopharmacol. 2001;78(2–3):213–6.

    CAS  PubMed  Google Scholar 

  48. Mativandlela SP, Lall N, Meyer JJ. Antibacterial, antifungal and antitubercular activity of (the roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root extracts. S Afr J Bot. 2006;72(2):232–7.

    Google Scholar 

  49. Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther. 2020;14:3235.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mangwani N, Singh PK, Kumar V. Medicinal plants: adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med. 2020;11(4):522–8.

    PubMed  Google Scholar 

  51. Molina-Salinas GM, Uc-Cachón AH, Peña-Rodríguez LM, Dzul-Beh AD, Escobedo Gracía-Medrano RM. Bactericidal effect of the leaf extract from musa spp. (AAB group, silk subgroup), cv.“manzano” against multidrug-resistant Mycobacterium tuberculosis. J Med Food. 2019;22(11):1183–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Macabeo A, Read R, Brophy J, Krohn K. Activity of the extract and indole alkaloids from Alstonia scholaris against Mycobacterium tuberculosis. Philipp Agric Sci. 2008;91(3):348–51.

    Google Scholar 

  53. Munna S, Basha SC, Reddy PR, Pramod N, Kumar YP, Basha GM. Antitubercular activity of Actiniopteris radiata linn. Phytochem Anal. 2014;10:12.

    Google Scholar 

  54. Mativandlela SP, Muthivhi T, Kikuchi H, Oshima Y, Hamilton C, Hussein AA, Van Der Walt ML, Houghton PJ, Lall N. Antimycobacterial flavonoids from the leaf extract of Galenia africana. J Nat Prod. 2009;72(12):2169–71.

    CAS  PubMed  Google Scholar 

  55. Mohamed JMM, Alqahtani A, Kumar TVA, Fatease AA, Alqahtani T, Krishnaraju V, Ahmad F, Menaa F, Alamri A, Muthumani R, Vijaya R. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in-vitro characterizations. Molecules. 2021;27(1):110.

    PubMed  PubMed Central  Google Scholar 

  56. Mujahid M, Hussain T, Siddiqui HH, Hussain A. Evaluation of hepatoprotective potential of Erythrina indica leaves against antitubercular drugs induced hepatotoxicity in experimental rats. J Ayurveda Integr Med. 2017;8(1):7–12.

    PubMed  Google Scholar 

  57. Muzammil MS, Manikandan M, Jafar A, Sakthivel P, Geetha S, Malarkodi R. Anti-inflammatory studies on Acalypha indica L. leaves by membrane stabilization. Indian J Nat Prod Resour. 2014;5(2):195–7.

    Google Scholar 

  58. N’guessan JD, Bidié AP, Lenta BN, Weniger B, Andre P, Guédé-Guina F. In vitro assays for bioactivity-guided isolation of antisalmonella and antioxidant compounds in Thonningia sanguinea flowers. Afr J Biotechnol. 2007;6(14):1685–9.

    Google Scholar 

  59. Nahrstedt A, Kant JD, Wray V. Acalyphin, a cyanogenic glucoside from Acalypha indica. Phytochemistry. 1982;21(1):101–5.

    CAS  Google Scholar 

  60. Nair SS, Pharande RR, Bannalikar AS, Mukne AP. In vitro antimycobacterial activity of acetone extract of Glycyrrhiza glabra. J Pharm Pharmacogn Res. 2015;3(4):80–6.

    CAS  Google Scholar 

  61. Norman GB. Herbal drugs and phytopharmaceuticals. A handbook for practice on a scientific basis. 2nd ed. New York/Stuttgart: Medpharm Scientific Publishers/CRC Press; 2001. p. 230–48.

    Google Scholar 

  62. Obogwu MB, Akindele AJ, Adeyemi OO. Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models. Chin J Nat Med. 2014;12(4):273–83.

    CAS  Google Scholar 

  63. Promsawan N, Kittakoop P, Boonphong S, Nongkunsarn P. Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia pulcherrima. Planta Med. 2003;69(08):776–7.

    CAS  PubMed  Google Scholar 

  64. Putri DU, Rintiswati N, Soesatyo MH, Haryana SM. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient-in vitro study. Nat Prod Res. 2018;32(4):463–7.

    CAS  PubMed  Google Scholar 

  65. Pari L, Kumar NA. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. J Med Food. 2002;5(3):171–7.

    CAS  PubMed  Google Scholar 

  66. Prasad R, Singh A, Gupta N, Tarke C. Role of bioenhancers in tuberculosis. Int J Health Sci Res. 2016;2016:3076.

    Google Scholar 

  67. Pérez-González MZ, Macías-Rubalcava ML, Hernández-Ortega S, Siordia-Reyes AG, Jiménez-Arellanes MA. Additional compounds and the therapeutic potential of Cnidoscolus chayamansa (McVaugh) against hepatotoxicity induced by antitubercular drugs. Biomed Pharmacother. 2019;1(117):109140.

    Google Scholar 

  68. Panda VS, Ashar HD, Sharan A. Antioxidant and hepatoprotective effects of Garcinia indica fruit rind in antitubercular drug-induced liver injury in rats. Botanics Targets Therapy. 2013;27(3):29–37.

    Google Scholar 

  69. Panchabhai TS, Ambarkhane SV, Joshi AS, Samant BD, Rege NN. Protective effect of Tinospora cordifolia, Phyllanthus emblica and their combination against antitubercular drugs induced hepatic damage: an experimental study. Phytother Res. 2008;22(5):646–50.

    CAS  PubMed  Google Scholar 

  70. Rajandeep K, Pushpinder K, Harpreet K. A review on antitubercular plants. J Pharm Innov. 2011;1:11–22.

    Google Scholar 

  71. Rao CV, Rawat AK, Singh AP, Singh A, Verma N. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models. Asian Pac J Trop Med. 2012;5(4):283–8.

    PubMed  Google Scholar 

  72. Ranju G, Niranjan S, Kumar PS, Kumar PV, Kumar PS. In vitro anthelmintic activity of Acalypha indica leaves extracts. Int J Res Ayurveda Pharm. 2011;2(1):247–9.

    Google Scholar 

  73. Sultana N, Lee NH. Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa. Phytother Res. 2007;21(12):1171–6.

    CAS  PubMed  Google Scholar 

  74. Sungthongjeen S, Puttipipatkhachorn S, Paeratakul O, Dashevsky A, Bodmeier R. Development of pulsatile release tablets with swelling and rupturable layers. J Control Release. 2004;95(2):147–59.

    CAS  PubMed  Google Scholar 

  75. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8(24):1112–20.

    CAS  PubMed  Google Scholar 

  76. Semalty A, Semalty M, Rawat BS, Singh D, Rawat MS. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv. 2009;6(6):599–612.

    CAS  PubMed  Google Scholar 

  77. Sejlitz T, Neujahr HY. Phenol hydroxylase from yeast: a model for phenol binding and an improved purification procedure. Eur J Biochem. 1987;170(1–2):343–9.

    CAS  PubMed  Google Scholar 

  78. Sharma A, Hill A, Kurbatova E, van der Walt M, Kvasnovsky C, Tupasi TE, Caoili JC, Gler MT, Volchenkov GV, Kazennyy BY, Demikhova OV. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study. Lancet Infect Dis. 2017;17(7):707–15.

    PubMed  PubMed Central  Google Scholar 

  79. Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PV, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. Biotechnol Adv. 2020;15(44):107629.

    Google Scholar 

  80. Saludes JP, Garson MJ, Franzblau SG, Aguinaldo AM. Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae). Phytother Res. 2002;16(7):683–5.

    CAS  PubMed  Google Scholar 

  81. Subbanna S, Gopenath TS, Basalingappa KM. Biogenic nanoparticles from Allium sativum and its bioactives applications. Eur J Mol Clin Med. 2020;7(08):2020.

    Google Scholar 

  82. Tasduq SA, Singh K, Satti NK, Gupta DK, Suri KA, Johri RK. Terminalia chebula (fruit) prevents liver toxicity caused by sub-chronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol. 2006;25(3):111–8.

    CAS  PubMed  Google Scholar 

  83. Tandon VR, Khajuria V, Kapoor B, Kour D, Gupta S. Hepatoprotective activity of Vitex negundo leaf extract against anti-tubercular drugs induced hepatotoxicity. Fitoterapia. 2008;79(7–8):533–8.

    PubMed  Google Scholar 

  84. Thang TD, Luu HV, Tuan NN, Hung NH, Dai DN, Ogunwande IA. Constituents of essential oils from the leaves and stem barks of Uvaria rufa and Uvaria cordata (Annonaceae) from Vietnam. J Essent Oil-Bear Plants. 2014;17(3):427–34.

    CAS  Google Scholar 

  85. Thakur JP, Gothwal PP. Edible plants as a source of antitubercular agents. J Pharmacogn Phytochem. 2015;4(1):228–34.

    Google Scholar 

  86. Tang J, Wang B, Wu T, Wan J, Tu Z, Njire M, Wan B, Franzblauc SG, Zhang T, Lu X, Ding K. Design, synthesis, and biological evaluation of pyrazolo [1, 5-a] pyridine-3-carboxamides as novel antitubercular agents. ACS Med Chem Lett. 2015;6(7):814–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tousif S, Singh DK, Mukherjee S, Ahmad S, Arya R, Nanda R, Ranganathan A, Bhattacharyya M, Van Kaer L, Kar SK, Das G. Nanoparticle-Formulated Curcumin Prevents Posttherapeutic Disease Reactivation and Reinfection with Mycobacterium tuberculosis following Isoniazid Therapy. Front Immunol. 2017 Jun 30;8:739. https://doi.org/10.3389/fimmu.2017.00739. PMID: 28713372; PMCID: PMC5491555.

  88. Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M, Cáceres-Farfán M, Molina-Salinas GM. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther. 2014;27(1):114–20.

    PubMed  Google Scholar 

  89. Viswanathan V, Phadatare AG, Mukne A. Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian J Pharm Sci. 2014;76(3):256.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vadivel E, Arondekar SG. Antitubercular and anthelmintic activity of Triumfetta rhomboidea. J Pharm Pharm Sci (IRJPMS). 2018;1(3):46–8.

    Google Scholar 

  91. Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm. 2019;45(1):11–20.

    CAS  PubMed  Google Scholar 

  92. Quan D, Nagalingam G, Payne R, Triccas JA. New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis. 2017;56:212–20.

    CAS  PubMed  Google Scholar 

  93. Wellington S, Hung DT. The expanding diversity of Mycobacterium tuberculosis drug targets. ACS Infect Dis. 2018;4(5):696–714.

    CAS  PubMed  Google Scholar 

  94. Xu Y, Liang B, Kong C, Sun Z. Traditional medicinal plants as a source of antituberculosis drugs: a system review. Biomed Res Int. 2021;2021:9910365.

    PubMed  PubMed Central  Google Scholar 

  95. Ying-Tsun M, Chuang JI, Lin J, Hsu F. Phenolic from Acalypha indica. J Chin Chem Soc. 1997;44:499–502.

    Google Scholar 

  96. Zhao J, Evangelopoulos D, Bhakta S, Gray AI, Seidel V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J Ethnopharmacol. 2014;155(1):796–800.

    CAS  PubMed  Google Scholar 

  97. Zuniga J, Torres-García D, Santos-Mendoza T, Rodriguez-Reyna TS, Granados J, Yunis EJ. Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol. 2012;2012:193923.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyati Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V., Gandhi, D., Patel, H., Acharya, N. (2023). Potential of Herbal Drugs for Treatment of Tuberculosis. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_15

Download citation

Publish with us

Policies and ethics