Skip to main content

Energy Forms and Quantum Dynamics

  • Conference paper
  • First Online:
Quantum and Stochastic Mathematical Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 377))

  • 465 Accesses

Abstract

We review Dirichlet form methods for the formulation of quantum dynamics where in many cases perturbations of the Laplacian are much more singular than e.g. the Kato class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.arthurjaffe.com/Assets/documents/ETH_First_Visit.htm

  2. R. Jost, The general theory of quantized fields. Am. Math. Soc. (1965)

    Google Scholar 

  3. R. Haag, On quantum field theories. Danske Mat.-Fys. Medd. 29, 12 (1955)

    Google Scholar 

  4. H. Araki, Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1, 492–504 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Coester, R. Haag, Representation of states in a field theory with canonical variables. Phys. Rev. 117, 1137 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Albeverio, R. Hoegh-Krohn, Quasi-invariant measures, symmetric diffusion processes and quantum fields, in Colloques Internationaux du CNRS, Tome 248. Méthodes mathématiques de la théorie quantique des champs (1976)

    Google Scholar 

  7. S. Albeverio, R. Hoegh-Krohn, Energy forms, Hamiltonians, and distorted Brownian paths. J. Math. Phys. 18, 907 (1977)

    Google Scholar 

  8. S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators: Solvable Schrödinger-Type Operators. London Mathematical Society Lecture Note Series 271 (Cambridge University Press, 2000)

    Google Scholar 

  9. S. Albeverio, M. Fukushima, W. Karwowski, Capacity and quantum mechanical tunneling. Commun. Math. Phys. 81, 501–513 (1981)

    Google Scholar 

  10. S. Albeverio, Ph. Blanchard, R. Hoegh-Krohn, A stochastic model for the orbits of planets and satellites: an interpretation of Titius–Bode law. Expo. Math. 4, 363–373 (1983)

    MathSciNet  MATH  Google Scholar 

  11. S. Albeverio, R. Hoegh-Krohn, Regularization of Hamiltonians and processes. J. Math. Phys. 21, 1636 (1980)

    Google Scholar 

  12. T. Hida, H.H. Kuo, J. Potthoff, L. Streit, White Noise. An Infinite Dimensional Calculus (Kluwer Academic, 1993)

    Google Scholar 

  13. Y.G. Kondratiev, P. Leukert, J. Potthoff, W. Westerkamp, Generalized functionals in Gaussian spaces—the characterization theorem revisited. J. Funct. Anal. 141, 301–318 (1996)

    Google Scholar 

  14. Yu.G. Kondratiev, Nuclear spaces of entire functions in problems of infinite-dimensional analysis. Sov. Math. Dokl. 22, 588–592 (1980)

    Google Scholar 

  15. S. Albeverio, T. Hida, J. Potthoff, L. Streit, The vacuum of the Høegh-Krohn model as a generalized white noise functional. Phys. Lett. B 217, 511 (1989)

    Article  MathSciNet  Google Scholar 

  16. J. Potthoff, L. Streit, Invariant states on random and quantum fields: \(\phi \)-bounds and white noise analysis. J. Funct. Anal. 111, 295–311 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Froehlich, Schwinger functions and their generating functionals. I Helv. Phys. Acta 47, 265–305 (1973)

    MathSciNet  Google Scholar 

  18. J. Froehlich, Schwinger functions and their generating functionals. II. Markovian and generalized path space measures. Adv. Math. 23, 119–180 (1977)

    Article  MathSciNet  Google Scholar 

  19. S. Albeverio, T. Hida, J. Potthoff, M. Röckner, L. Streit, Dirichlet forms in terms of white noise analysis I—construction and QFT examples. Rev. Math. Phys. 1, 291–312 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Albeverio, T. Hida, J. Potthoff, M. Röckner, L. Streit, Dirichlet forms in terms of white noise analysis II—closability and diffusion processes. Rev. Math. Phys. 1, 313–323 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Jost (ed.), Local Quantum Theory (Academic Press, 1969)

    Google Scholar 

  22. M. de Faria, T. Hida, H. Watanabe, Intersection local times as generalized white noise functionals. Acta Appl. Math. 46, 351–362 (1997)

    Google Scholar 

  23. M. Grothaus, M.J. Oliveira, J.L. Silva, Self-avoiding fractional Brownian motion—the Edwards model. J. Stat. Phys. 145, 1513–1523 (2011)

    Google Scholar 

  24. S. Albeverio, Y.-Z. Hu, M. Röckner, X.Y. Zhou, Stochastic quantization of the two-dimensional polymer measure. Appl. Math. Optim. 40, 341–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Bock, T. Fattler, L. Streit, Stochastic quantization for the fractional Edwards measure. Acta Appl. Math. 151, 81–88 (2017)

    Google Scholar 

  26. W. Bock, J.L. da Silva, T. Fattler, Analysis of stochastic quantization for the fractional Edwards measure. Rep. Math. Phys. 82

    Google Scholar 

  27. S. Albeverio, A. Hahn, A. Sengupta, Chern–Simons theory, Hida distributions, and state models. IDAQP 6 (Special Issue on Probability and Geometry), 65–81 (2003)

    Google Scholar 

  28. S. Albeverio, Z.-M. Ma, M. Röckner, Quasi regular Dirichlet forms and the stochastic quantization problem, in Festschrift Masatoshi Fukushima, Chap. 3, pp. 27–58 (World Scientific, 2015). Interdiscip. Math. Sci. 17

    Google Scholar 

  29. W. Bock, T. Fattler, L. Streit, The Edwards model for fBm loops and starbursts. https://arxiv.org/abs/1909.06225v1

  30. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, in De Gruyter Studies in Mathematics, vol. 19, 2nd edn. (De Gruyter, Berlin 2011)

    Google Scholar 

  31. M. Fukushima, Dirichlet Forms and Markov Processes (North Holland, Amsterdam and Kodansha, Tokyo, 1980)

    MATH  Google Scholar 

  32. T. Hida, J. Potthoff, L. Streit, Dirichlet forms and white noise analysis. Commun. Math. Phys. 116, 235–245 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.R.S. Varadhan, Appendix to ‘Euclidean quantum field theory’ by K. Symanzik, in Local Quantum Theory (Academic Press, 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Streit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Streit, L. (2023). Energy Forms and Quantum Dynamics. In: Hilbert, A., Mastrogiacomo, E., Mazzucchi, S., Rüdiger, B., Ugolini, S. (eds) Quantum and Stochastic Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-031-14031-0_3

Download citation

Publish with us

Policies and ethics