Skip to main content

Diabetes Mellitus and Microbiota: Knowledge and Perspectives

  • Chapter
  • First Online:
Gut Microbiota in Aging and Chronic Diseases

Abstract

Diabetes mellitus is a global epidemic disease constantly increasing, due to genetic predisposition and behavioral risk factors, with etiological mechanisms not completely defined. Moreover, diabetes can induce critical complications that damage the heart, vessels, kidney, eye and nerves, with important alterations in the quality and quantity of life. Gut microbiota represents a topic of growing interest in clinical research and several studies have focused their attention on the possible interplay between metabolic diseases and alteration in gut microbiota. A different composition in bacterial phyla and species among patients with type 1 and type 2 diabetes mellitus and healthy people has been observed, with some differences in patients with complications. The purpose of this chapter is to show current knowledge on the composition of gut microbiota in diabetic patients, the relationship between diabetic treatments and gut microbiota and the possible advantages in the prevention and therapy of diabetes through the action on the microbiota by the use of prebiotics, probiotics and fecal transplant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Yang W, Chen G et al. (2019) Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One 14(12):e0226372. Published 2019 Dec 31. doi:https://doi.org/10.1371/journal.pone.0226372

  • Alberto González-Regueiro J, Moreno-Castañeda L, Uribe M, Carlos C-T (2017) The role of bile acids in glucose metabolism and their relation with diabetes. Ann Hepatol 16(Suppl 1):S15–S20. https://doi.org/10.5604/01.3001.0010.5494 PMID: 31196630

    Article  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Google Scholar 

  • Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485. https://doi.org/10.1016/j.cub.2016.04.016 Epub 2016 May 12 PMID: 27185560

    Article  CAS  Google Scholar 

  • Blaser MJ, Dominguez-Bello MG (2016) The human microbiome before birth. Cell Host Microbe 20:558–560. https://doi.org/10.1016/j.chom.2016.10.014

    Article  CAS  Google Scholar 

  • Boursi B, Mamtani R, Haynes K, Yang YX (2015) The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 172:639–648. https://doi.org/10.1530/EJE-14-1163

    Article  CAS  Google Scholar 

  • Calabrese CM, Valentini A, Calabrese G (2021) Gut Microbiota and type 1 diabetes mellitus: the effect of mediterranean diet. Front Nutr 7:329

    Article  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  Google Scholar 

  • Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ et al (2008) Caesarean section is associated with an increased risk of childhood onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 51:726–735. https://doi.org/10.1007/s00125-008-0941-z

    Article  CAS  Google Scholar 

  • Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes (2022). Diabetes Care 45(Suppl. 1):S17–S38

    Google Scholar 

  • Cortez RV, Taddei CR, Sparvoli LG, Ângelo AG, Padilha M, Mattar R, Daher S (2019) Microbiome and its relation to gestational diabetes. Endocrine 64(2):254–264

    Article  CAS  Google Scholar 

  • Couto MR, Gonçalves P, Magro F, Martel F (2020) Microbiota-derived butyrate regulates intestinal inflammation: focus on inflammatory bowel disease. Pharmacol Res 159:104947

    Article  CAS  Google Scholar 

  • Craciun CI, Neag MA, Catinean A, Mitre AO, Rusu A, Bala C, Roman G, Buzoianu AD, Muntean DM, Craciun AE (2022) The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus. Biomedicines 10(2):308. https://doi.org/10.3390/biomedicines10020308.PMID:35203519;PMCID:PMC8869176

    Article  CAS  Google Scholar 

  • Creely SJ, McTernan PG, Kusminski CM et al. (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:e740e7

    Google Scholar 

  • Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, Vestergaard H, Rørbye C, Jørgensen NR, Christiansen OB, Heinsen F-A, Franke A, Hansen T, Lauenborg J, Pedersen O (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and post-partum. Microbiome

    Google Scholar 

  • Das T, Jayasudha R, Chakravarthy S, Prashanthi GS, Bhargava A, Tyagi M, Rani PK, Pappuru RR, Sharma S, Shivaji S (2021) Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep 11:2738

    Article  CAS  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  Google Scholar 

  • De Groot PF, Belzer C, Aydin O, Levin E, Levels JH, Aalvink S et al (2017) Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE 12:e0188475. https://doi.org/10.1371/journal.pone.0188475

    Article  CAS  Google Scholar 

  • DeFronzo RA, Barzilai N, Simonson DC (1991) Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab 73:1294

    Article  CAS  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975. https://doi.org/10.1073/pnas.1002601107

    Article  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  Google Scholar 

  • Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, Karamnova N, Kostryukova E, Babenko V, Vakhitova M, Boytsov S (2016) Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect 5(1):1–9. https://doi.org/10.1530/EC-15-0094. Epub 2015 Nov 10. PMID: 26555712; PMCID: PMC4674628

  • Feng W, Ao H, Peng C (2018) Gut Microbiota, short-chain fatty acids, and herbal medicines. Front Pharmacol 9:1354. Published 2018 Nov 23. doi:https://doi.org/10.3389/fphar.2018.01354

  • Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266

    Article  CAS  Google Scholar 

  • Ghosh TS, Rampelli S, Jeffery IB et al (2020) Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69(7):1218–1228. https://doi.org/10.1136/gutjnl-2019-319654

    Article  CAS  Google Scholar 

  • Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hongmei Z et al (2017) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8:1785

    Article  Google Scholar 

  • Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420

    Article  CAS  Google Scholar 

  • Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11(8):1943. Published 2019 Aug 18. doi:https://doi.org/10.3390/nu11081943

  • Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46(6):261-274. doi:https://doi.org/10.1016/j.npep.2012.08.005

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  Google Scholar 

  • IDF Diabetes Atlas 2021, 10th edition https://diabetesatlas.org/atlas/tenth-edition/. Accessed on January 17, 2022. American Diabetes Association Professional Practice Committee

  • Kanbay M, Onal EM, Afsar B, Dagel T, Yerlikaya A, Covic A, Vaziri ND (2018) The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50:1453–1466

    Article  Google Scholar 

  • Karamali M, Dadkhah F, Sadrkhanlou M, Jamilian M, Ahmadi S, Tajabadi-Ebrahimi M, Jafari P, Asemi Z (2016) Efects of probiotic supplementation on glycaemic control and lipid profles in gestational diabetes: a randomized, double-blind, placebocontrolled trial. Diabetes Metab 42(4):234–324

    Article  CAS  Google Scholar 

  • Karamali M, Nasiri N, Taghavi Shavazi N, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The efects of synbiotic supplementation on pregnancy outcomes in gestational diabetes. Probiotics Antimicrob Proteins 10(3):4

    Article  Google Scholar 

  • Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ et al (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298:G851–G859. https://doi.org/10.1152/ajpgi.00327.2009

    Article  CAS  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103. https://doi.org/10.1038/nature12198 Epub 2013 May 29 PMID: 23719380

    Article  CAS  Google Scholar 

  • Kim MS, Hwang SS, Park EJ, Bae JW (2013) Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep 5:765–775

    CAS  Google Scholar 

  • Koh A, Molinaro A, StÃ¥hlman M, Khan MT, Schmidt C, MannerÃ¥s-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F (2018) Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175(4):947-961.e17. https://doi.org/10.1016/j.cell.2018.09.055 Epub 2018 Oct 25 PMID: 30401435

    Article  CAS  Google Scholar 

  • Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165:1332e45

    Google Scholar 

  • Kootte RS, Levin E, Salojarvi J, et al. (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26:611e619.e6

    Google Scholar 

  • Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273. https://doi.org/10.1016/j.chom.2015.01.001

    Article  CAS  Google Scholar 

  • Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 108:11548–11553. https://doi.org/10.1073/pnas.1108924108

    Article  Google Scholar 

  • Lee H, Ko G (2014) Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80:5935–5943

    Article  Google Scholar 

  • Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, Gentile CL (2018) SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol 17:1–14

    Article  Google Scholar 

  • Lepper P, Schumann C, Triantafilou K, Rasche F, Schuster T, Frank H, Schneider E, Triantafilou M, von Eynatten M (2007) Association of lipopolysaccharide-binding protein and coronary artery disease in men. J Am Coll Cardiol 50:25–31

    Article  CAS  Google Scholar 

  • Li T, Li H, Li W, Chen S, Feng T, Jiao W, Wu C, Dong J, Li Y, Li S et al (2019) Interleukin-37 sensitize the elderly type 2 diabetic patients to insulin therapy through suppressing the gut microbiota dysbiosis. Mol Immunol 112:322–329

    Article  CAS  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x

    Article  CAS  Google Scholar 

  • Lund-Blix NA, Stene LC, Rasmussen T, Torjesen PA, Andersen LF, Ronningen KS (2015) Infant feeding in relation to islet autoimmunity and type 1 diabetes in genetically susceptible children: the MIDIA study. Diabetes Care 38:257–263. https://doi.org/10.2337/dc14-1130

    Article  Google Scholar 

  • Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542

    Article  CAS  Google Scholar 

  • Madsen MSA, Holm JB, Pallejà A, Wismann P, Fabricius K, Rigbolt K, Mikkelsen M, Sommer M, Jelsing J, Nielsen HB et al (2019) Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep 9:1–12

    Article  Google Scholar 

  • Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, Ardalan M, Zununi Vahed S (2017) The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharm 93:412–419

    Article  CAS  Google Scholar 

  • Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM (2001) Effect of metformin on glucagon-like peptide 1 (GLP-1) and Leptin levels in obese nondiabetic subjects. Diabetes Care 24:489–494

    Article  CAS  Google Scholar 

  • Manoff M (2015) Gut microbiome: the peacekeepers. Nature 518:S3–S11

    Article  Google Scholar 

  • Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P et al (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–514. https://doi.org/10.1016/j.chom.2011.10.007

    Article  CAS  Google Scholar 

  • McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342

    Article  CAS  Google Scholar 

  • Mohseni S, Bayani M, Bahmani F, Tajabadi-Ebrahimi M, Bayani MA, Jafari P, Asemi Z (2018) The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Res 34(3). https://doi.org/10.1002/dmrr.2970. Epub 2017 Dec 21. PMID: 29193662

  • Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21:109–117. https://doi.org/10.1016/j.molmed.2014.12.002

    Article  Google Scholar 

  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging 4(4):267–285. https://doi.org/10.3233/NHA-170030.PMID:29951588;PMCID:PMC6004897

    Article  Google Scholar 

  • Navab-Moghadam F, Sedighi M, Khamseh ME, Alaei-Shahmiri F, Talebi M, Razavi S, Amirmozafari N (2017) The association of type II diabetes with gut microbiota composition. Microb Pathog 110:630–636. https://doi.org/10.1016/j.micpath.2017.07.034 Epub 2017 Jul 21 PMID: 28739439

    Article  CAS  Google Scholar 

  • Norris JM, Barriga K, Klingensmith G, Hoffman M, Eisenbarth GS, Erlich HA et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720. https://doi.org/10.1001/jama.290.13.1713

    Article  CAS  Google Scholar 

  • Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16(1):90

    Article  Google Scholar 

  • Olivares M, Neyrinck A, Pötgens SA, Beaumont M, Salazar N, Cani PD, Bindels LB, Delzenne NM (2018) The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia 61:1838–1848

    Article  CAS  Google Scholar 

  • Palau-Rodriguez M, Tulipan S, Queipo-Ortuño MI, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C (2015) Metabolomic insight into the intricate gut microbial host interaction in the development of obesity and type 2 diabetes. Front Microbiol 6:1151

    Article  Google Scholar 

  • Palmer AK, Gustafson B, Kirkland JL, Smith U (2019) Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62(10):1835–1841. https://doi.org/10.1007/s00125-019-4934-x

    Article  Google Scholar 

  • Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 11(10):277. https://doi.org/10.3389/fimmu.2019.00277.Erratum.In:FrontImmunol.2019Jun28;10:1486.PMID:30915065;PMCID:PMC6421268

    Article  Google Scholar 

  • Petit Homme R, George AK, Stanisic DN, Malonee C, Molnar J, Smolenkova I, Sandhu HAS, Tyagi SC, Singh M (2020) Effects of probiotic on the development of diabetic retinopathy. Investig Ophthalmol Vis Sci 61:4961

    Google Scholar 

  • Pineiro M, Asp NG, Reid G, Macfarlane S, Morelli L, Brunser O, Tuohy K (2008) FAO technical meeting on prebiotics. J Clin Gastroenterol 42:S156–S159

    Article  Google Scholar 

  • Pitocco D, Di Leo M, Tartaglione L, De Leva F, Petruzziello C, Saviano A, Pontecorvi A, Ojetti V (2020) The role of gut microbiota in mediating obesity and diabetes mellitus. Eur Rev Med Pharmacol Sci 24(3):1548–1562. https://doi.org/10.26355/eurrev_202002_20213 PMID: 32096204

    Article  CAS  Google Scholar 

  • Plovier H, Everard A, Druart C, et al. (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107e13

    Google Scholar 

  • Prasad J, Gill HS, Smart JB, Gopal PK (1998) Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993–1002

    Article  Google Scholar 

  • Pussinen PJ, Havulinn AS, Lehto M, Sundvall J, Salomma V (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34:392–397

    Article  CAS  Google Scholar 

  • Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R (2009) Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin 25:1919–1930

    Article  CAS  Google Scholar 

  • Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307:380–384

    Article  CAS  Google Scholar 

  • Sadauskaite-Kuehne V, Ludvigsson J, Padaiga Z, Jasinskiene E, Samuelsson U (2004) Longer breastfeeding is an independent protective factor against development of type 1 diabetes mellitus in childhood. Diabetes Metab Res Rev 20:150–157. https://doi.org/10.1002/dmrr.425

    Article  Google Scholar 

  • Sandoval DA, D’Alessio DA (2015) Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 95(2):513–548. https://doi.org/10.1152/physrev.00013.2014 PMID: 25834231

    Article  CAS  Google Scholar 

  • Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, Amirmozafari N (2017) Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog 111:362–369. https://doi.org/10.1016/j.micpath.2017.08.038 Epub 2017 Sep 11 PMID: 28912092

    Article  CAS  Google Scholar 

  • Sims H, Smith KH, Bramlage P, Minguet J (2018) Sotagliflozin: a dual sodium-glucose co-transporter-1 and -2 inhibitor for the management of Type 1 and Type 2 diabetes mellitus. Diabet Med 35(8):1037–1048. https://doi.org/10.1111/dme.13645 Epub 2018 Jul 3 PMID: 29637608

    Article  CAS  Google Scholar 

  • Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15:73

    Article  Google Scholar 

  • Stewart CJ, Ajami NJ, O’brien JL, Hutchinson DS, Smith DP, Wong MC, et al (2018) Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562:583–8. https://doi.org/10.1038/s41586-018-0617-x

  • Su B, Liu H, Li J, Sunli Y, Liu B, Liu D, Zhang P, Meng X (2015) Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes 7:729–739

    Article  CAS  Google Scholar 

  • Su M, Nie Y, Shao R, Duan S, Jiang Y, Wang M, Xing Z, Sun Q, Liu X, Xu W (2018) Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE 13(10):e0205695

    Article  Google Scholar 

  • Thompson PJ, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A (2019) Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab 29(5):1045–1060

    Article  CAS  Google Scholar 

  • Tsai CY, Lu HC, Chou YH, et al. (2022) Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: a pilot study. Front Endocrinol (Lausanne). 12:814770. Published 2022 Jan 10. doi:https://doi.org/10.3389/fendo.2021.814770.

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027e31

    Google Scholar 

  • Vatanen T, Kostic AD, D’hennezel E, Siljander H, Franzosa EA, Yassour M, et al. (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–53. https://doi.org/10.1016/j.cell.2016.04.007

  • Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu S (2013) Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol 38:99–103

    Article  CAS  Google Scholar 

  • Vergoni B, Cornejo PJ, Gilleron J et al (2016) DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65(10):3062–3074

    Article  CAS  Google Scholar 

  • Verma A, Xu K, Du T, Zhu P, Liang Z, Liao S, Zhang J, Raizada MK, Grant MB, Li Q (2019) Expression of human ACE2 in Lactobacillus and beneficial effects in diabetic retinopathy in mice. Mol Methods Clin Dev 14:161–170

    Article  CAS  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231

    Article  CAS  Google Scholar 

  • Virtanen SM, Nevalainen J, Kronberg-Kippila C, Ahonen S, Tapanainen H, Uusitalo L et al (2012) Food consumption and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr 95:471–478. https://doi.org/10.3945/ajcn.111.018879

    Article  CAS  Google Scholar 

  • Vojdani A (2014) A potential link between environmental triggers and autoimmunity. Autoimmune Dis 2014:437231. https://doi.org/10.1155/2014/437231

    Article  CAS  Google Scholar 

  • Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–6.e7. https://doi.org/10.1053/j.gastro.2012.06.031. Epub 2012 Jun 20. Erratum in: Gastroenterology. 2013 Jan;144(1):250. PMID: 22728514

  • Wang L, Li P, Tang Z, Yan X, Feng B (2016) Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep 6:33251

    Article  CAS  Google Scholar 

  • Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, Ji P, Zhang F, Jia Z, Wang Y, Zheng Z, Zhang H, Zhao F (2018) Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67(9):1614–1625

    Article  CAS  Google Scholar 

  • Wang Y, Ye X, Ding D, Lu Y (2020) Characteristics of the intestinal flora in patients with peripheral neuropathy associated with type 2 diabetes. J Int Med Res 48:300060520936806

    CAS  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  Google Scholar 

  • Wu H, Esteve E, Tremaroli V, et al. (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850e8

    Google Scholar 

  • Yan X, Feng B, Li P, Tang Z, Wang L (2016) Microflora disturbance during progression of glucose intolerance and effect of sitagliptin: an animal study. J Diabetes Res 2016:1–10

    CAS  Google Scholar 

  • Yang M, Shi F-H, Liu W, Zhang M-C, Feng R-L, Qian C, Liu W, Ma J (2020) Dapagliflozin modulates the fecal microbiota in a type 2 diabetic rat model. Front Endocrinol 11:635

    Article  Google Scholar 

  • Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X (2017a) Featured article: structure moderation of gut microbiota in liraglutide-treated diabetic male rats. Exp Biol Med 243:34–44

    Article  Google Scholar 

  • Zhang Q, Xiaojing W, Li M, Yu M, Ping F, Zheng J, Wang T, Wang X (2017b) Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE 12:e0184735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Pitocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzo, G.E. et al. (2023). Diabetes Mellitus and Microbiota: Knowledge and Perspectives. In: Marotta, F. (eds) Gut Microbiota in Aging and Chronic Diseases. Healthy Ageing and Longevity, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-14023-5_7

Download citation

Publish with us

Policies and ethics