Skip to main content

Robust Estimation Through Preliminary Testing Based on the LAD-LASSO

  • Chapter
  • First Online:
Innovations in Multivariate Statistical Modeling

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 426 Accesses

Abstract

The least absolute deviation (LAD) estimator is an alternative to the ordinary least squares estimator when some outliers exist, or the error term in the regression model has a heavy-tailed distribution. The gist of this chapter is to present a new estimator for sparse and robust linear regression that improves the preliminary test LAD estimator, an estimator which depends on a test decision. Our strategy is to apply auxiliary information in the estimation obtained from employing the LAD-LASSO operator to find the null hypothesis, building the preliminary test estimator and its improvement. A Monte-Carlo simulation study shows that this new estimator is better than others. Moreover, an objective data analysis confirms that our proposed estimator performs better in the prediction error sense than the LAD, LAD-LASSO, and preliminary test estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfons, A., Croux, C., & Gelper, S. (2013). Sparse least trimmed squares regression for analyzing high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bancroft, T. A. (1944). On biases in estimating due to use of preliminary tests of significance. The Annals of Mathematical Statistics, 15(2), 195–204.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bancroft, T. A. (1964). Analysis and inference for incompletely specified models involving the use of preliminary test(s) of significance. Biometrics, 20(3), 427–442.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bancroft, T. A. (1965). Inference for incompletely specified models in the physical sciences (with discussion). Bulletin ISI, Proceedings 35th Session, 41(1), 497–515.

    Google Scholar 

  5. Barro, R., & Lee, J. W. (1994). Dataset for a panel of 138 countries, http://admin.nber.org/pub/barro.lee.

  6. Chen, K., Ying, Z., Zhang, H., & Zhao, L. (2008). Analysis of least absolute deviation. Biometrika, 95(1), 107–122.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  8. Filzmoser, P., Serneels, S., Maronna, R., & Croux, C. (2009). Robust multivariate methods in chemometrics. In Brown, S. D., Tauler, R., & Walczak, B. (Eds.), Comprehensive chemometrics: Chemical and biochemical data analysis (pp. 663–722). Elsevier. http://hdl.handle.net/20.500.12708/26445.

  9. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 186–199.

    MATH  Google Scholar 

  10. Hoffmann, I., Serneels, S., Filzmoser, P., & Croux, C. (2015). Sparse partial robust M regression. Chemometrics and Intelligent Laboratory Systems, 149, 50–59.

    Article  Google Scholar 

  11. Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. The Annals of Statistics, 28(5), 1356–1378.

    MathSciNet  MATH  Google Scholar 

  12. Koenker, R. (2015). quantreg: Quantile regression, R package version 5.19.

    Google Scholar 

  13. Koenker, R., & Machado, J. A. F. (1999). Goodness of fit and related inference process for quantile regression. Journal of the American Statistical Association, 94, 1296–1310.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurnaz, F. S., Hoffmann, I., & Filzmoser, P. (2018). Robust and sparse estimation methods for high-dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems, 172, 211–222.

    Article  Google Scholar 

  15. Norouzirad, M., & Arashi, M. (2019). Preliminary test and Stein-type shrinkage ridge estimators in robust regression. Statistical Papers, 60, 1849–1882.

    Article  MathSciNet  MATH  Google Scholar 

  16. Norouzirad, M., Hossain, S., & Arashi, M. (2018). Shrinkage and penalized estimators in weighted least absolute deviations regression models. Journal of Statistical Computation and Simulation, 88(8), 1557–1575.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pollard, D. (1991). Asymptotic for least absolute deviation regression estimators. Econometric Theory, 7(2), 186–199.

    Article  MathSciNet  Google Scholar 

  18. Rahman, M., & Gokhale, D. V. (1996). Testimation in regression parameter estimation. Biometrical Journal, 38(7), 809–817.

    Article  MATH  Google Scholar 

  19. Rosset, S., & Zhu, J. (2004). Discussion of “Least angle regression’’ by Efron et al. The Annals of Statistics, 32(2), 469–475.

    Google Scholar 

  20. Saleh, A. K. Md. E. (2006). Theory of preliminary test and stein-type estimation with applications. New York: Wiley.

    Google Scholar 

  21. Saleh, A. KMd. E., Arashi, M., & Tabatabaey, S. M. M. (2014). Statistical inference for models with multivariate t-distributed errors. New Jersy: Wiley.

    MATH  Google Scholar 

  22. Sclove, S. L., Morris, C., & Radhakrishnan, R. (1972). Non-optimality of preliminary-test estimators for the mean of a multivariate normal distribution. Annals of Mathematical Statistics, 43, 1481–1490.

    Article  MathSciNet  MATH  Google Scholar 

  23. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  24. Wang, H., Li. G., & Jiang, G. (2007). Robust regression shrinkage and consistent variable selection through the LAD-LASSO. Journal of Business & Economic Statistics, 25(3), 347–355.

    Google Scholar 

  25. Zhao, P., & Yu, B. (2006). On model selection consistency of LASSO. Journal of Machine Learning Research, 7, 2541–2563.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. Norouzirad and F. J. Marques wish to acknowledge funding provided by the National Funds through the FCT—Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

M. Arashi’s work was based upon research supported in part by the National Research Foundation (NRF) of South Africa, SARChI Research Chair UID: 71199; Ref.: IFR170227223754 grant No. 109214. The opinions expressed and conclusions arrived at are those of the authors and are not necessarily attributed to the NRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Norouzirad or M. Arashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norouzirad, M., Arashi, M., Marques, F.J., Esmaeili, F. (2022). Robust Estimation Through Preliminary Testing Based on the LAD-LASSO. In: Bekker, A., Ferreira, J.T., Arashi, M., Chen, DG. (eds) Innovations in Multivariate Statistical Modeling. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-031-13971-0_19

Download citation

Publish with us

Policies and ethics