Skip to main content

Electrochemical Promotion and Related Phenomena During Ammonia Synthesis

  • Chapter
  • First Online:
Recent Advances in Electrochemical Promotion of Catalysis

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 61))

  • 429 Accesses

Abstract

A large number of studies on the electrochemical synthesis of ammonia have been published in the past two decades, but very few of them searched for electrochemical promotion phenomena. This is because in most of the studies, pure N2 (instead of N2/H2 mixture) was introduced over the cathode. In the studies on NH3 synthesis, the Faradaic efficiency, Λ, attains very low values, and, in most cases, the phenomenon is “sub-Faradaic,” i.e., Λ < 1. The Λ values are substantially larger when a mixture of N2 and H2, rather than N2 alone, is introduced at the cathode. In the reaction of NH3 decomposition, the picture is improved: in all cases, Λ > 1 and values of the order of 100 have been reported. For either reaction (synthesis or decomposition), the ρ values are comparable to those reported in previous NEMCA studies: a maximum ρ = 220 has been reported, while typical values are between 2 and 10. The NEMCA characteristics in NH3 synthesis were poor primarily because its thermodynamic equilibrium limits the yield and, therefore, electrical energy must be supplied to the system in order to attain the desired conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smil V (2001) Enriching the earth. Fritz Haber, Carl Bosch and the transformation of world food production. The MIT Press, Cambridge, MA

    Google Scholar 

  2. Smil V (1999) Detonator of the population explosion. Nature 400:415–415. https://doi.org/10.1038/22672

    Article  CAS  Google Scholar 

  3. Shipman MA, Symes MD (2017) Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today 286:57–68. https://doi.org/10.1016/j.cattod.2016.05.008

    Article  CAS  Google Scholar 

  4. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639. https://doi.org/10.1038/ngeo325

    Article  CAS  Google Scholar 

  5. Liu H (2013) Ammonia synthesis Catalysts. Innovation and practice. World Scientific Publishing Co. Pte. Ltd. and Chemical Industry Press, Singapore

    Book  Google Scholar 

  6. Garagounis I, Kyriakou V, Skodra A, Vasileiou E, Stoukides M (2014) Electrochemical synthesis of ammonia in solid electrolyte cells. Front Energy Res 2:1–10. https://doi.org/10.3389/fenrg.2014.00001

    Article  Google Scholar 

  7. Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594. https://doi.org/10.1016/j.ijhydene.2013.09.054

    Article  CAS  Google Scholar 

  8. Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M (2017) Progress in the electrochemical synthesis of ammonia. Catal Today 286. https://doi.org/10.1016/j.cattod.2016.06.014

  9. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrog Energy 37:1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004

    Article  CAS  Google Scholar 

  10. Stoukides M (2016) Proton conducting materials electrocatalyst in solid state ammonia synthesis. In: Marrony M (ed) Proton-conducting ceramics, from fundamentals to applied research. Pan Standford Publishing, Singapore, pp 377–405

    Google Scholar 

  11. MacFarlane DR, Cherepanov PV, Choi J, Suryanto BHR, Hodgetts RY, Bakker JM, Ferrero Vallana FM, Simonov AN (2020) A roadmap to the ammonia economy. Joule 4:1186–1205. https://doi.org/10.1016/j.joule.2020.04.004

    Article  CAS  Google Scholar 

  12. Geng C, Li J, Weiske T, Schwarz H (2019) Complete cleavage of the N≡N triple bond by Ta 2 N + via degenerate ligand exchange at ambient temperature: a perfect catalytic cycle. Proc Natl Acad Sci 116:21416–21420. https://doi.org/10.1073/pnas.1913664116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boudart M (1994) Ammonia synthesis: the bellwether reaction in heterogeneous catalysis. Top Catal 1:405–414. https://doi.org/10.1007/BF01492292

    Article  CAS  Google Scholar 

  14. Rod TH, Logadottir A, Nørskov JK (2000) Ammonia synthesis at low temperatures. J Chem Phys 112:5343–5347. https://doi.org/10.1063/1.481103

    Article  CAS  Google Scholar 

  15. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK (2012) A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 14:1235–1245. https://doi.org/10.1039/c1cp22271f

    Article  CAS  PubMed  Google Scholar 

  16. Garagounis I, Vourros A, Stoukides D, Dasopoulos D, Stoukides M (2019) Electrochemical synthesis of ammonia: recent efforts and future outlook. Membranes (Basel) 9:1–17. https://doi.org/10.3390/membranes9090112

    Article  CAS  Google Scholar 

  17. Van Der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 43:5183–5191. https://doi.org/10.1039/c4cs00085d

    Article  CAS  PubMed  Google Scholar 

  18. Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8:2180–2186. https://doi.org/10.1002/cssc.201500322

    Article  CAS  PubMed  Google Scholar 

  19. Van Tamelen EE, Akermark B (1968) Electrolytic reduction of molecular nitrogen. J Am Chem Soc 90:4492–4493. https://doi.org/10.1021/ja01018a074

    Article  Google Scholar 

  20. Gorodyskii AV, Danilin VV, Efimov ON, Nechaeva NE, Tsarev VN (1979) Electrocatalytic properties of the Ti(OH)3−Mo(III) system in the reduction of molecular nitrogen. React Kinet Catal Lett 11:337–342. https://doi.org/10.1007/BF02079722

    Article  CAS  Google Scholar 

  21. Sclafani A, Augugliaro V, Schiavello M (1983) Dinitrogen electrochemical reduction to ammonia over iron cathode in aqueous medium. J Electrochem Soc 130:734–736. https://doi.org/10.1149/1.2119794

    Article  CAS  Google Scholar 

  22. Halmann M (1984) Electrochemical reduction of molecular nitrogen to ammonia in aqueous alkali: a re-examination. J Electroanal Chem Interfacial Electrochem 181:307–308. https://doi.org/10.1016/0368-1874(84)83639-4

    Article  CAS  Google Scholar 

  23. Pickett CJ, Talarmin J (1985) Electrosynthesis of ammonia. Nature 317:652–653. https://doi.org/10.1038/317652a0

    Article  CAS  Google Scholar 

  24. Furuya N, Yoshiba H (1989) Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanines. J Electroanal Chem Interfacial Electrochem 272:263–266. https://doi.org/10.1016/0022-0728(89)87086-X

    Article  CAS  Google Scholar 

  25. Tsuneto A, Kudo A, Sakata T (1993) Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem Lett 22:851–854. https://doi.org/10.1246/cl.1993.851

    Article  Google Scholar 

  26. Leigh GJ (1995) A fixation with fixation. Science (80-) 268:827–828. https://doi.org/10.1126/science.268.5212.827

  27. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3–4:359–363. https://doi.org/10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  28. Vourros A, Kyriakou V, Garagounis I, Vasileiou E, Stoukides M (2017) Chemical reactors with high temperature proton conductors as a main component: Progress in the past decade. Solid State Ionics 306:76–81. https://doi.org/10.1016/j.ssi.2017.02.019

    Article  CAS  Google Scholar 

  29. Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science (80-) 282:98–100. https://doi.org/10.1126/science.282.5386.98

  30. Amar IA, Lan R, Petit CTG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15:1845–1860. https://doi.org/10.1007/s10008-011-1376-x

    Article  CAS  Google Scholar 

  31. Gunduz S, Deka DJ, Ozkan US (2020) A review of the current trends in high-temperature electrocatalytic ammonia production using solid electrolytes. J Catal 387:207–216. https://doi.org/10.1016/j.jcat.2020.04.025

    Article  CAS  Google Scholar 

  32. Choi J, Suryanto BHR, Wang D, Du H-L, Hodgetts RY, Ferrero Vallana FM, MacFarlane DR, Simonov AN (2020) Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat Commun 11:5546. https://doi.org/10.1038/s41467-020-19130-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersen SZ, Čolić V, Yang S, Schwalbe JA, Nielander AC, McEnaney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Statt MJ, Blair SJ, Mezzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL, Nørskov JK, Chorkendorff I (2019) A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570:504–508. https://doi.org/10.1038/s41586-019-1260-x

    Article  CAS  PubMed  Google Scholar 

  34. Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen C-P, Smith MR, Hamann TW (2020) Recent advances and challenges of electrocatalytic N 2 reduction to ammonia. Chem Rev 120:5437–5516. https://doi.org/10.1021/acs.chemrev.9b00659

    Article  CAS  PubMed  Google Scholar 

  35. Zhu X, Mou S, Peng Q, Liu Q, Luo Y, Chen G, Gao S, Sun X (2020) Aqueous electrocatalytic N 2 reduction for ambient NH 3 synthesis: recent advances in catalyst development and performance improvement. J Mater Chem A 8:1545–1556. https://doi.org/10.1039/C9TA13044F

    Article  CAS  Google Scholar 

  36. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion, and metal-support interaction. Kluwer Academic/Plenum, New York

    Google Scholar 

  37. Marnellos G, Zisekas S, Stoukides M (2000) Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors. J Catal 193:80–87. https://doi.org/10.1006/jcat.2000.2877

    Article  CAS  Google Scholar 

  38. Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602. https://doi.org/10.1021/jp002236v

    Article  CAS  Google Scholar 

  39. Ouzounidou M, Skodra A, Kokkofitis C, Stoukides M (2007) Catalytic and electrocatalytic synthesis of NH3 in a H+ conducting cell by using an industrial Fe catalyst. Solid State Ionics 178:153–159. https://doi.org/10.1016/j.ssi.2006.11.019

    Article  CAS  Google Scholar 

  40. Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Stoukides M (2015) Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. Solid State Ionics 275:110–116. https://doi.org/10.1016/j.ssi.2015.01.002

    Article  CAS  Google Scholar 

  41. Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Manerbino A, Coors WG, Stoukides M (2016) Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell. Solid State Ionics 288:357–362. https://doi.org/10.1016/j.ssi.2015.12.022

    Article  CAS  Google Scholar 

  42. Díez-Ramírez J, Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Sánchez P, Dorado F, Stoukides M (2017) Enhancement of ammonia synthesis on a Co 3 Mo 3 N-Ag electrocatalyst in a K-βAl 2 O 3 solid electrolyte cell. ACS Sustain Chem Eng 5:8844–8851. https://doi.org/10.1021/acssuschemeng.7b01618

    Article  CAS  Google Scholar 

  43. Kosaka F, Nakamura T, Oikawa A, Otomo J (2017) Electrochemical acceleration of ammonia synthesis on Fe-based alkali-promoted electrocatalyst with proton conducting solid electrolyte. ACS Sustain Chem Eng 5:10439–10446. https://doi.org/10.1021/acssuschemeng.7b02469

    Article  CAS  Google Scholar 

  44. Li CI, Matsuo H, Otomo J (2021) Effective electrode design and the reaction mechanism for electrochemical promotion of ammonia synthesis using Fe-based electrode catalysts. Sustain Energy Fuels 5:188–198. https://doi.org/10.1039/d0se01385d

    Article  CAS  Google Scholar 

  45. Pitselis GE, Petrolekas PD, Vayenas CG (1997) Electrochemical promotion of ammonia decomposition over Fe catalyst films interfaced with K+- & H+- conductors. Ionics (Kiel) 3:110–116. https://doi.org/10.1007/BF02375532

    Article  CAS  Google Scholar 

  46. Balomenou S, Pitselis G, Polydoros D, Giannikos A, Vradis A, Frenzel A, Pliangos C, Pütter H, Vayenas CG (2000) Electrochemical promotion of Pd, Fe and distributed Pt catalyst-electrodes. Solid State Ionics 136–137:857–862. https://doi.org/10.1016/S0167-2738(00)00524-5

    Article  Google Scholar 

  47. Skodra A, Ouzounidou M, Stoukides M (2006) NH3 decomposition in a single-chamber proton conducting cell. Solid State Ionics 177:2217–2220. https://doi.org/10.1016/j.ssi.2006.03.051

    Article  CAS  Google Scholar 

  48. Zisekas S, Karagiannakis G, Kokkofitis C, Stoukides M (2008) ΝH3 decomposition in a proton conducting solid electrolyte cell. J Appl Electrochem 38:1143–1149. https://doi.org/10.1007/s10800-008-9551-1

    Article  CAS  Google Scholar 

  49. Pinzón M, Ruiz-López E, Romero A, de la Osa AR, Sánchez P, de Lucas-Consuegra A (2021) Electrochemical activation of Ru catalyst with alkaline ion conductors for the catalytic decomposition of ammonia. Mol Catal 511:111721. https://doi.org/10.1016/j.mcat.2021.111721

    Article  CAS  Google Scholar 

  50. Vayenas CG, Koutsodontis CG (2008) Non-faradaic electrochemical activation of catalysis. J Chem Phys 128. https://doi.org/10.1063/1.2824944

  51. Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435. https://doi.org/10.1007/s10008-011-1336-5

    Article  CAS  Google Scholar 

  52. Garagounis I, Kyriakou V, Anagnostou C, Bourganis V, Papachristou I, Stoukides M (2011) Solid electrolytes: applications in heterogeneous catalysis and chemical cogeneration. Ind Eng Chem Res 50:431–472. https://doi.org/10.1021/ie1001058

    Article  CAS  Google Scholar 

  53. Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) Activation of catalyst for gas-phase combustion by electrochemical pretreatment. J Electrochem Soc 144:L312–L314. https://doi.org/10.1149/1.1838143

    Article  CAS  Google Scholar 

  54. Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Manerbino A, Coors WG, Stoukides M (2015) Reaction rate enhancement during the electrocatalytic synthesis of ammonia in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell. Top Catal 58:1193–1201. https://doi.org/10.1007/s11244-015-0491-9

    Article  CAS  Google Scholar 

  55. Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226. https://doi.org/10.1023/A:1003295112211

    Article  CAS  Google Scholar 

  56. Falgairette C, Jaccoud A, Fóti G, Comninellis C (2008) The phenomenon of “permanent” electrochemical promotion of catalysis (P-EPOC). J Appl Electrochem 38:1075–1082. https://doi.org/10.1007/s10800-008-9554-y

    Article  CAS  Google Scholar 

  57. Fóti G, Jaccoud A, Falgairette C, Comninellis C (2009) Charge storage at the Pt/YSZ interface. J Electroceram 23:175–179. https://doi.org/10.1007/s10832-007-9352-7

    Article  CAS  Google Scholar 

  58. Souentie S, Xia C, Falgairette C, Li YD, Comninellis C (2010) Investigation of the “permanent” electrochemical promotion of catalysis (P-EPOC) by electrochemical mass spectrometry (EMS) measurements. Electrochem Commun 12:323–326. https://doi.org/10.1016/j.elecom.2009.12.031

    Article  CAS  Google Scholar 

  59. Metkemeijer R, Achard P (1994) Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour. J Power Sources 49:271–282. https://doi.org/10.1016/0378-7753(93)01822-Y

    Article  CAS  Google Scholar 

  60. Kim K-W, Kim Y-J, Kim I-T, Park G-I, Lee E-H (2006) Electrochemical conversion characteristics of ammonia to nitrogen. Water Res 40:1431–1441. https://doi.org/10.1016/j.watres.2006.01.042

    Article  CAS  PubMed  Google Scholar 

  61. Marnellos G, Karagiannakis G, Zisekas S, Stoukides M (2000) Electrocatalytic synthesis of ammonia at atmospheric pressure. Stud Surf Sci Catal 130A:413–418. https://doi.org/10.1016/s0167-2991(00)80992-1

    Article  CAS  Google Scholar 

  62. Garagounis I, Kyriakou V, Stoukides M (2013) Electrochemical promotion of catalytic reactions: thermodynamic analysis and calculation of the limits in faradaic efficiency. Solid State Ionics 231:58–62. https://doi.org/10.1016/j.ssi.2012.10.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vourros, A., Garagounis, I., Stoukides, M. (2023). Electrochemical Promotion and Related Phenomena During Ammonia Synthesis. In: Vernoux, P., Vayenas, C.G. (eds) Recent Advances in Electrochemical Promotion of Catalysis. Modern Aspects of Electrochemistry, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-13893-5_8

Download citation

Publish with us

Policies and ethics