Skip to main content

Rényi Entropies of the Free Fermi Gas in Multi-Dimensional Space at High Temperature

  • Chapter
  • First Online:
Toeplitz Operators and Random Matrices

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 289))

  • 406 Accesses

Abstract

We study the local and (bipartite) entanglement Rényi entropies of the free Fermi gas in multi-dimensional Euclidean space in thermal equilibrium. We prove positivity of the entanglement entropies with Rényi index γ ≤ 1 for all temperatures T > 0. Furthermore, for general γ > 0 we establish the asymptotics of the entropies for large T and large scaling parameter α > 0 for two different regimes—for fixed chemical potential and also for fixed particle density ρ > 0. In particular, we thereby provide the last remaining building block for a complete proof of our low- and high-temperature results presented (for γ = 1) in J. Phys. A: Math. Theor. 49, 30LT04 (2016); [Corrigendum. 50, 129501 (2017)], but being supported there only by the basic proof ideas.

In memory of Harold Widom (1932–2021)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [18, 26] the right-hand side of (1) is mistakenly multiplied by (2π)d∕2.

References

  1. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Balian, From Microphysics to Macrophysics II (Springer, Berlin, 1992)

    MATH  Google Scholar 

  4. J. Bendat, S. Sherman, Monotone and convex operator functions. Trans. Am. Math. Soc. 79, 58–71 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. F.A. Berezin, Convex operator functions. Math. USSR Sbornik 17, 269–277 (1972) [Russian original: Mat. Sbornik (N.S.) 88, 268–276 (1972)]

    Google Scholar 

  6. M.S. Birman, M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Reidel, Dordrecht, 1987). [Translated from the 1980 Russian original by S. Khrushchëv and V. Peller]

    Book  Google Scholar 

  7. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 2, 2nd edn. (Springer, Berlin, 1997)

    Google Scholar 

  8. A.M. Budylin, V.S. Buslaev, On the asymptotic behaviour of the spectral characteristics of an integral operator with a difference kernel on expanding domains, in Differential Equations, Spectral Theory, Wave Propagation. Probl. Mat. Fiz., vol. 13 (Leningrad University, Leningrad, 1991), pp. 16–60 [in Russian]

    Google Scholar 

  9. C. Davis, A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 8, 42–44 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Fermi, Zur Quantelung des idealen einatomigen Gases. Z. Physik 36, 902–912 (1926)

    Article  MATH  Google Scholar 

  11. D. Gioev, Szegő limit theorem for operators with discontinuous symbols and applications to entanglement entropy. Int. Math. Res. Not. 2006, 95181, 23 pp. (2006)

    Google Scholar 

  12. D. Gioev, I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture. Phys. Rev. Lett. 96, 100503, 4 pp. (2006)

    Google Scholar 

  13. F. Hansen, G.K. Pedersen, Jensen’s operator inequality. Bull. Lond. Math. Soc. 35, 553–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Laptev, Y. Safarov, Szegő type limit theorems. J. Funct. Anal. 138, 544–559 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Leschke, A.V. Sobolev, W. Spitzer, Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof. Phys. Rev. Lett. 112, 160403, 5 pp. (2014)

    Google Scholar 

  17. H. Leschke, A.V. Sobolev, W. Spitzer, Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature. J. Phys. A: Math. Theor. 49, 30LT04, 9 pp. (2016); Corrigendum. 50, 129501, 1 p. (2017)

    Google Scholar 

  18. H. Leschke, A.V. Sobolev, W. Spitzer, Trace formulas for Wiener–Hopf operators with applications to entropies of free fermionic equilibrium states. J. Funct. Anal. 273, 1049–1094 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Roccaforte, Asymptotic expansions of traces for certain convolution operators. Trans. Am. Math. Soc. 285, 581–602 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Simon: Loewner’s Theorem on Monotone Matrix Functions (Springer Nature, Cham, 2019)

    Google Scholar 

  21. A.V. Sobolev, Pseudo-Differential Operators with Discontinuous Symbols: Widom’s Conjecture. Mem. Am. Math. Soc. 222(1043), vi+104 pp. (AMS, Providence, 2013)

    Google Scholar 

  22. A.V. Sobolev, On the Schatten–von Neumann properties of some pseudo-differential operators. J. Funct. Anal. 266, 5886–5911 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.V. Sobolev, Wiener–Hopf operators in higher dimensions: the Widom conjecture for piece-wise smooth domains. Integr. Equ. Oper. Theory 81, 435–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.V. Sobolev, Functions of self-adjoint operators in ideals of compact operators. J. Lond. Math. Soc. (2) 95, 157–176 (2017)

    Google Scholar 

  25. A.V. Sobolev, Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols. Geom. Funct. Anal. 27, 676–725 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. A.V. Sobolev, On Szegő formulas for truncated Wiener–Hopf operators. Integr. Equ. Oper. Theory 91, 1, 28 pp. (2019)

    Google Scholar 

  27. H. Widom, A theorem on translation kernels in n dimensions. Trans. Am. Math. Soc. 94, 170–180 (1960)

    MathSciNet  MATH  Google Scholar 

  28. H. Widom, On a class of integral operators with discontinuous symbol, in Toeplitz Centennial, ed. by I. Gohberg, Operator Theory: Advances and Applications, vol. 4 (Birkhäuser, Basel, 1982), pp. 477–500

    Google Scholar 

  29. H. Widom, A trace formula for Wiener–Hopf operators. J. Oper. Theory 8, 279–298 (1982)

    MathSciNet  MATH  Google Scholar 

  30. H. Widom, Asymptotic Expansions for Pseudodifferential Operators on Bounded Domains. Lecture Notes in Mathematics, vol. 1152 (Springer, Berlin, 1985)

    Google Scholar 

  31. H. Widom, On a class of integral operators on a half-space with discontinuous symbol. J. Funct. Anal. 88, 166–193 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Sobolev .

Editor information

Editors and Affiliations

Appendix: The Fermi Symbol for Fixed ρ and Large T

Appendix: The Fermi Symbol for Fixed ρ and Large T

Our main aim is to derive formula (61) for a Hamiltonian h as specified in Sect. 5.1. After a change of variables and replacing μ with μ ρ(T) formula (11) for the mean particle density takes the form

Since \(T^{-1} h(T^{\frac {1}{2m}}\boldsymbol \xi )\to h_\infty (\boldsymbol \xi )\) as T →, for each ξ ≠ 0, the condition (12) requires that \(\exp \big (-\mu _\rho (T)/T\big )\to \infty \). Consequently,

$$\displaystyle \begin{aligned} \varrho\big(T, \mu_{\rho}(T)\big) = \varkappa T^{\frac{d}{2m}} \exp\big(\mu_\rho(T)/T\big) \big(1+o(1)\big)\,, \end{aligned} $$

where ϰ is defined in (62). Using (12), this leads to (61).

As explained in the Introduction, the high-temperature limit under the condition (12) corresponds to the Maxwell–Boltzmann gas limit. This fact can be conveniently restated in terms of the so-called fugacity as follows. By (43) the integrated density of states \(\mathcal N(T)\) of (13), satisfies for large T the relation \(\mathcal N(T)\asymp T^{\frac {d}{2m}}\). So (61) implies \(z_\rho (T)\asymp \rho \, \mathcal N(T)^{-1}\to 0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leschke, H., Sobolev, A.V., Spitzer, W. (2022). Rényi Entropies of the Free Fermi Gas in Multi-Dimensional Space at High Temperature. In: Basor, E., Böttcher, A., Ehrhardt, T., Tracy, C.A. (eds) Toeplitz Operators and Random Matrices. Operator Theory: Advances and Applications, vol 289. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-13851-5_21

Download citation

Publish with us

Policies and ethics