Skip to main content

Design and Modeling of a Novel Compliant Ankle Mechanism with Flexible Slider-Crank Limbs

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2800 Accesses

Abstract

This paper presents the conceptual design and modeling of a novel compliant ankle mechanism, which has flexible slider-crank limbs. Two elastic beams are utilized as the springy elements to connect the sliders and crank, which provides the ankle joint with passive rotational stiffness when two sliders are driven independently. Both the forward and inverse kinetostatic model are derived to determine the equilibrium configuration and the corresponding actuation variables. Besides, the rotational stiffness of the studied ankle mechanism is modeled based on results from the kinetostatic model. Results of stiffness analysis reveal that the proposed ankle joint is capable of varying its rotational stiffness if the sliders are controlled properly. The kinetostatic and stiffness models developed in this paper lay a foundation for stiffness design and prototype development in the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saeedvand, S., Jafari, M., Aghdasi, H.S., Baltes, J.: A comprehensive survey on humanoid robot development. Knowl. Eng. Rev. 34 (2019)

    Google Scholar 

  2. Liang, Q., Wang, Y.: Flexible ankle based on PKM with force/torque sensor for humanoid robot (2011)

    Google Scholar 

  3. Kumar, S., Nayak, A., Peters, H., Schulz, C., Müller, A., Kirchner, F.: Kinematic analysis of a novel parallel 2SPRR+1U ankle mechanism in humanoid robot. In: Lenarcic, J., Parenti-Castelli, V. (eds.) ARK 2018. SPAR, vol. 8, pp. 431–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93188-3_49

    Chapter  Google Scholar 

  4. van Oort, G., Reinink, R., Stramigioli, S.: New ankle actuation mechanism for a humanoid robot. IFAC Proc. Vol. 44(1), 8082–8088 (2011)

    Article  Google Scholar 

  5. Stoeffler, C., Kumar, S., Peters, H., Brüls, O., Müller, A., Kirchner, F.: Conceptual design of a variable stiffness mechanism in a humanoid ankle using parallel redundant actuation. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 462–468. IEEE (2018)

    Google Scholar 

  6. Zeng, G., Hemami, A.: An overview of robot force control. Robotica 15(5), 473–482 (1997)

    Article  Google Scholar 

  7. Hogan, N., Buerger, S.: Robotics and automation handbook, chapitre impedance and interaction control, pages 19.1–19.24, vol. 10, p. 47. CRC Press, New York (2004)

    Google Scholar 

  8. Bryson, C.E., Rucker, D.C.: Toward parallel continuum manipulators. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 778–785. IEEE (2014)

    Google Scholar 

  9. Chen, G., Wang, H., Lin, Z., et al.: The principal axes decomposition of spatial stiffness matrices. IEEE Trans. Rob. 31(1), 191–207 (2015)

    Article  Google Scholar 

  10. Chen, G., Zhang, Z., Wang, H.: A general approach to the large deflection problems of spatial flexible rods using principal axes decomposition of compliance matrices. ASME J. Mech. Robot. 10(3), 031012 (2018)

    Article  Google Scholar 

  11. Chen, G., Kang, Y., Liang, Z., Zhang, Z., Wang, H.: Kinetostatics modeling and analysis of parallel continuum manipulators. Mech. Mach. Theory 163, 104380 (2021)

    Article  Google Scholar 

  12. Selig, J.M.: Geometric Fundamentals of Robotics, vol. 128. Springer, New York (2005). https://doi.org/10.1007/b138859

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This research work was supported in part by the National Key R &D program of China under the Grant 2019YFA0709001, and the National Natural Science Foundation of China under the Grant 52022056 and 51875334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genliang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, S., Chen, G., Yan, W., Wang, H. (2022). Design and Modeling of a Novel Compliant Ankle Mechanism with Flexible Slider-Crank Limbs. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics