Skip to main content

Guidance Method for UAV to Occupy Attack Position at Close Range

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2698 Accesses

Abstract

Unmanned aerial vehicles (UAVs) have become an important role in modern air combat. Aiming at the requirement that UAVs can autonomously maneuver according to the battlefield information to obtain the advantage of attack position in close-range air combat scenarios, a solution based on the constrained gradient method to solve the optimization guidance index of UAV attack position occupation to control UAV maneuvering is proposed. The UAV kinematic model is used as an algorithm control carrier. According to the actual air combat confrontation situation, it judges whether the distance and angle meet the attack or avoid conditions, and designs corresponding optimization indicators. Based on the input target state information, the constrained gradient method is used to optimize the attack or avoidance indicators. Perform the solution to obtain the guidance instructions, and input the instructions into the corresponding UAV kinematics model to complete the UAV's attack position occupation guidance. According to the engineering application requirements, a typical 1V1 air combat simulation test scenario is established. The simulation results show that the method in this paper can guide the UAV to obtain the advantage of attacking position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evdokimenkov, V.N., Kozorez, D.A., Rabinskiy, L.N.: Unmanned aerial vehicle evasion manoeuvres from enemy aircraft attack. J. Mech. Behav. Mater. 30(1), 87–94 (2021)

    Article  Google Scholar 

  2. Zhou, H, Zhang, X., Zhang, Z.: Reinforcement learning technology for air combat confrontation of unmanned aerial vehicle. In: International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021). SPIE, 12168: 454–459 (2022)

    Google Scholar 

  3. Pope, A.P., Ide, J.S., Mićović, D., et al.: Hierarchical reinforcement learning for air-to-air combat. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 275–284 (2021)

    Google Scholar 

  4. Zhang, Y., Li J., Hu, B., Zhang, J.: An improved PSO algorithm for solving multi-uav cooperative reconnaissance task decision-making problem. In: Proceedings of 2016 IEEE/CSAA International Conference on Aircraft Utility Systems(AUS). 434–437 (2016)

    Google Scholar 

  5. Zhao, Y., Wang, X., Kong, W., Shen, L., Jia, S.: Decision making of UAV for Tracking Moving Target via Information Geometry. In: 2016 35th Chinese Control Conference (CCC), pp. 552–558 (2016)

    Google Scholar 

  6. Guanglei, M., Mingzhe, Z., Haiyin, P., Huimin, Z.: Threat assessment method of two aircraft formation based on Cooperative tactical identification. Syst. Eng. Electron. Technol. 42(10): 2285–2293 (2020)

    Google Scholar 

  7. Virtanen, K., Raivio, T., Hamalainen. R.P.: Modeling pilot's sequential maneuvering decisions by a multistage influence diagram. J. Guidance Control Dyn. 27(4) (2012)

    Google Scholar 

  8. Lin, Z., Ming'an, T., Wei, Z., Shengyun, Z.: Sequential maneuvering decisions based on multi-stage influence diagram in air combat. J. Syst. Eng. Electron. 18(3 )(2007)

    Google Scholar 

  9. Virtanen, K., Karelahti, J., Raivio, T.: Modeling air combat by a moving horizon influence diagram game. J. Guid. Control Dyn. 29(5) (2006)

    Google Scholar 

  10. Lin, Z., Ming'an, T., Wei, Z.: Application of impact map countermeasures in multi-aircraft coordinated air combat. J. BUAA, 04):450–453. https://doi.org/10.13700/j.bh.1001-5965 (2007)

  11. McGrew, J.S., How, J.P., Williams, B.: Air-combat strategy using approximate dynamic programming. J. Guid. Control. Dyn. 33(5), 1641–1654 (2010)

    Article  Google Scholar 

  12. Ma, Y.F., Ma, X.L., Song, X.: A case study on air combat decision using approximated dynamic programming. Math. Probl. Eng. 4 (2004)

    Google Scholar 

  13. Li, H.F., Yi, W.F., Cheng, X.M.: Target tracking control algorithm based on approximate dynamic programming. J. Beijing Univ. Aeronaut. Astronaut. 03, 597–605 (2019)

    Google Scholar 

  14. Huang, C.Q., Zhao, K.X., Hang, B.J., Wei, Z.L.: Maneuvering decision-making method of UAV based on approximate dynamic programming. J. Electron. Inf. Technol. 40(10), 2447–2452 (2018)

    Google Scholar 

  15. Xu, G.D,, Lv, C., Wang, G.H., et al.: Research on UCAV autonomous air combat maneuvering decision-making based on bi-matrix game. Ship Electron. Eng. 37(11), 24–28–39 (2017)

    Google Scholar 

  16. Chang, Y., Jiang, C.S., Chen, Z.W.: Decision-making based on fuzzy neural network for air combat of multi-aircraft against multitarget. Electron. Opt. Control 18(04), 13–17 (2011)

    Google Scholar 

  17. Gao, Y.Y., Yu, M.J., Han, Q.S., Dong, X.J.: Air combat maneuver decision-making based on improved symbiotic organisms search algorithm. J. Beijing Univ. Aeronaut. Astronaut. 03, 429–436 (2019)

    Google Scholar 

  18. Rodin, E.Y., Lirov, Y., Mittnik, S., et al.: Artificial intelligence in air combat games. Comput. Math. Appl. 3(1):261–274 (1987)

    Google Scholar 

  19. Imado, F., Kuroda, T.: Family of local solutions in a missile aircraft differential game. J. Guid. Control. Dyn. 34(2), 583–591 (2015)

    Article  Google Scholar 

  20. Park, H., Lee, B.Y., Tahk, M.J., et al.: Differential game based air combat maneuver generation using scoring function matrix. Int. J. Aeronaut. Space Sci. 17(2), 204–213 (2016)

    Article  Google Scholar 

  21. Huang, C.Q., Dong, K.S., Huang, H.Q., et al.: Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization. J. Syst. Eng. Electron. 29(01), 86–97 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Guanglei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bingbing, X., Guanglei, M., Yingnan, W., Runnan, Z. (2022). Guidance Method for UAV to Occupy Attack Position at Close Range. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics