Skip to main content

Protein-Ligand Binding Affinity Prediction Based on Deep Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

Abstract

The identification of novel drug target (DT) interactions is an important part of the drug discovery process. A large number of studies have investigated whether DT interacts through dichotomies, yet the strength of the interaction between ligand and protein can be imagined as a continuous value of binding affinity. At present, many methods have been proposed to predict this value, most of which need to determine the three-dimensional structure of proteins, but the structure of some proteins is difficult to know. In this paper, we propose a deep learning-based approach to predict binding affinity that does not rely on three-dimensional structure, but instead takes proteins and their structural properties and ligand sequences as input features. Compared to other methods that utilize the 3D structural characteristics of proteins, this model exhibits better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salazar, D.E.: Chapter 25-Modern Drug Discovery and Development. Elsevier Inc. (2009)

    Google Scholar 

  2. Finney, N., et al.: Drug Discovery and Development. Wiley-Interscience (2007)

    Google Scholar 

  3. Mutowo, P., et al.: A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL. J. Biomed. Semant. 7(1), 59 (2016)

    Article  Google Scholar 

  4. Fine, J., et al.: CANDOCK.: chemical atomic network-based hierarchical flexible docking algorithm using generalized statistical potentials. J. Chem. Inf. Model. (2020)

    Google Scholar 

  5. Tang, J., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model. 54, 735–743 (2014)

    Article  Google Scholar 

  6. Inglese, J., Auld, D.S.: High throughput screening (HTS) techniques: applications in chemical biology. Wiley Encycl. Chem. Biol. 1, 1–15 (2008)

    Google Scholar 

  7. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016). https://doi.org/10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  8. Gabel, J., Desaphy, J., Rognan, D.: Beware of machine learning-based scoring functions—on the danger of developing black boxes. J. Chem. Inf. and Model. 54(10), 2807–2815 (2014). https://doi.org/10.1021/ci500406k

    Article  Google Scholar 

  9. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

    Google Scholar 

  10. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Compu. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  11. Yang, J., Baek, M., Seok, C.: GalaxyDock3: protein–ligand docking that considers the full ligand conformational flexibility. J. Comput. Chem. 40(31), 2739–2748 (2019). https://doi.org/10.1002/jcc.26050

    Article  Google Scholar 

  12. Zhai, C.Y.: Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction. Biochimie (2011)

    Google Scholar 

  13. Ganapathiraju, M.K., et al.: Characterization of protein secondary structure. IEEE Signal Process. Mag. 21(3),78–87 (2004)

    Google Scholar 

  14. Zhang, F., et al.: PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictorselection. Bioinformatics (Supplement_2) (2000)

    Google Scholar 

  15. David, W.: SMILES: a chemical language and information system. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  16. O'Boyle, N. M., et al.: Open babel: an open chemical toolbox. J. Cheminform. 3(1), 33 (2011)

    Google Scholar 

  17. Wang, J.: Pearson Correlation Coefficient. Springer, New York (2013)

    Book  Google Scholar 

  18. Bais, R., et al.: Analytical evaluation of troponin I ES assay on the VITROS (R) 5600 integrated system. Annual Meeting of the American Association for Clinical Chemistry (2009)

    Google Scholar 

  19. Heller, G., Mo, Q.: Estimating the concordance probability in a survival analysis with a discrete number of risk groups. Lifetime Data Anal. 22(2), 263–279 (2015). https://doi.org/10.1007/s10985-015-9330-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Tapio, P., et al.: Toward more realistic drug–target interaction predictions. Brief. Bioinformatics (2), 325–337 (2007)

    Google Scholar 

  21. Zeng, Y., et al.: Deep drug-target binding affinity prediction with multiple attention blocks. Brief. Bioinformatics (5), 5 (2021)

    Google Scholar 

  22. Stepniewska-Dziubinska, M.M., Zielenkiewicz, P, Siedlecki, P.: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction (2017)

    Google Scholar 

  23. Zixuan, C., Guo-Wei, W., Dunbrack, R.L.: TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput. Biol. 13(7) (2017)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (61902272, 62073231, 62176175, 61876217, 61902271), National Research Project (2020YFC2006602), Provincial Key Laboratory for Computer Information Processing Technology, Soochow University (KJS2166), Opening Topic Fund of Big Data Intelligent Engineering Laboratory of Jiangsu Province (SDGC2157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Liu, J., Jiang, T., Guan, S., Wu, H. (2022). Protein-Ligand Binding Affinity Prediction Based on Deep Learning. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics