Skip to main content

Wide Band THz Antenna Design Using Salp Swarm Algorithm for 6G Communications Systems

  • Chapter
  • First Online:
A Glimpse Beyond 5G in Wireless Networks

Part of the book series: Signals and Communication Technology ((SCT))

  • 375 Accesses

Abstract

The future 6G wireless communications will need the definition of new spectral bands and the employment of novel advanced physical layer solutions. The millimeter-wave (mmWave) frequency bands have been allocated for the fifth generation (5G) of cellular systems, while additional mmWave sub-bands have been assigned as well. The need to support higher data rates than 5G in the order of terabits per second requires more bandwidth. However, the total consecutive available bandwidth in mmWave bands is still less than 10 GHz, so such data rates cannot be supported. In this context, future 6G communication systems require the use of the terahertz communication band (0.1–10 THz). The THz band is envisioned as a critical wireless technology for meeting future demands in 5G and beyond. For several years, there has been a lack of THz transceivers and antennas, so that the THz band has become one of the electromagnetic (EM) spectrum’s least studied frequency ranges in terms of wireless communication. However, the need for 6G communication systems has redefined the requirements for THz antennas. In this book chapter, we provide a complete framework for circular polarized antenna design in the low THz band. This optimization framework is based on a swarm intelligence algorithm, namely, the salp swarm algorithm (SSA). The numerical results show that the SSA has been successfully applied in designing antenna with wide band operation and circular polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE Standard for High Data Rate Wireless Multi-Media Networks–Amendment 2: 100 gb/s Wireless Switched Point-to-Point Physical Layer. IEEE Std 802.15.3d-2017 (Amendment to IEEE Std 802.15.3-2016 as amended by IEEE Std 802.15.3e-2017) (2017) pp. 1–55 . https://doi.org/10.1109/IEEESTD.2017.8066476

  2. I.F. Akyildiz, C. Han, S. Nie, Combating the distance problem in the millimeter wave and terahertz frequency bands. IEEE Commun. Mag. 56(6), 102–108 (2018). https://doi.org/10.1109/MCOM.2018.1700928

    Article  Google Scholar 

  3. H. Aliakbari, A. Abdipour, R. Mirzavand, A. Costanzo, P. Mousavi, A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication, in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016 (2016)

    Google Scholar 

  4. ANSYS: Electomagnetics Suite, ANSYS: User’s Guide, Version 16.1 (2015)

    Google Scholar 

  5. D.J. Bekers, S. Monni, S.M. van den Berg, A.M. van de Water, B.J. Morsink, C. Alboin, V. Ducros, M. Celikbas, J. Blanche, N. Fiscante, G. Gerini, J.P. Martinaud, M. Rochette, G.H.C. van Werkhoven, Optimization of phased arrays integrated with fss and feeding elements based on parametric models, in The Second European Conference on Antennas and Propagation, 2007. EuCAP (2007), pp. 1–7

    Google Scholar 

  6. A.D. Boursianis, S.K. Goudos, T.V. Yioultsis, K. Siakavara, P. Rocca, Mimo antenna design for 5G communication systems using salp swarm algorithm, in 2020 International Workshop on Antenna Technology (iWAT) (2020), pp. 1–3. https://doi.org/10.1109/iWAT48004.2020.1570618331

  7. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6g networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020). https://doi.org/10.1109/MCOM.001.1900411

    Article  Google Scholar 

  8. S. Goudos, Joint power allocation and user association in non-orthogonal multiple access networks: an evolutionary approach. Phys. Commun. 37 (2019). https://doi.org/10.1016/j.phycom.2019.100841

  9. S. Goudos, T. Yioultsis, K. Dalidou, K. Siakavara, A low cost wide band and circularly polarized modified half e-shaped patch antenna for 5G mobile communications, in IET Conference Publications, EuCAP 2018, vol. 2018 (2018)

    Google Scholar 

  10. S.K. Goudos, Application of the Whale Optimization Algorithm to Antenna Design for mm-Wave 5G Communications Systems (Springer International Publishing, Cham, 2021), pp. 251–267.. https://doi.org/10.1007/978-3-030-74311-6_8

    Google Scholar 

  11. S.K. Goudos, A. Tsiflikiotis, D. Babas, K. Siakavara, C. Kalialakis, G.K. Karagiannidis, Evolutionary design of a dual band e-shaped patch antenna for 5G mobile communications, in 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) (2017), pp. 1–4

    Google Scholar 

  12. S.K. Goudos, T.V. Yioultsis, A.D. Boursianis, K.E. Psannis, K. Siakavara, Application of new hybrid jaya grey wolf optimizer to antenna design for 5G communications systems. IEEE Access 7, 71061–71071 (2019)

    Article  Google Scholar 

  13. R.L. Haupt, Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antenn. Propag. 55(3 I), 577–582 (2007)

    Google Scholar 

  14. M.M. Islam, M.T. Islam, M.R.I. Faruque, R.W. Aldhaheri, M. Samsuzzaman, Design of a compact UWB antenna with a partial ground plane on epoxy woven glass material. Sci. Eng. Composite Mat. 24(1), 73–79 (2017). https://doi.org/10.1515/secm-2014-0297

    Article  Google Scholar 

  15. N. Jin, Y. Rahmat-Samii, Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antenn. Propag. 53(11), 3459–3468 (2005). https://doi.org/10.1109/tap.2005.858842

    Article  Google Scholar 

  16. J.M. Kovitz, H. Rajagopalan, Y. Rahmat-Samii, Circularly polarised half e-shaped patch antenna: a compact and fabrication-friendly design. IET Microw. Antenna Propag. 10(9), 932–938 (2016)

    Article  Google Scholar 

  17. J. Kumar, S. Shirgan, Compact partial ground plane 1x2 patch antennas, in 2014 International Conference on Computational Intelligence and Communication Networks (2014), pp. 33–37. https://doi.org/10.1109/CICN.2014.19

  18. K. Mak, H. Lai, K. Luk, C. Chan, Circularly polarized patch antenna for future 5G mobile phones. IEEE Access 2, 1521–1529 (2014)

    Article  Google Scholar 

  19. T. Manabe, Y. Miura, T. Ihara, Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE J. Sel. Areas Commun. 14(3), 441–447 (1996)

    Article  Google Scholar 

  20. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, Mirjalili, S.M.: Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

  21. V. Ramasami, A HFSS API to Control HFSS from Matlab (2020). https://github.com/yuip/hfss-api/. Accessed 19 July 2021

  22. P. Rocca, G. Oliveri, A. Massa, Differential evolution as applied to electromagnetics. IEEE Antenna. Propag. Mag. 53(1), 38–49 (2011). https://doi.org/10.1109/MAP.2011.5773566

    Article  Google Scholar 

  23. F.J. Villegas, T. Cwik, Y. Rahmat-Samii, M. Manteghi, A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antenna. Propag. 52(9), 2424–2435 (2004)

    Article  Google Scholar 

  24. R. Xu, S. Gao, B.S. Izquierdo, C. Gu, P. Reynaert, A. Standaert, G.J.Gibbons, W. Bösch, M.E. Gadringer, D. Li, A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications. IEEE Access 8, 57615–57629 (2020). https://doi.org/10.1109/ACCESS.2020.2981393

    Article  Google Scholar 

  25. L. Zhang, Z. Cui, Y.C. Jiao, F.S. Zhang, Broadband patch antenna design using differential evolution algorithm. Microw. Opt. Technol. Lett. 51(7), 1692–1695 (2009)

    Article  Google Scholar 

  26. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G.K. Karagiannidis, P. Fan, 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Vehic. Technol. Mag. 14(3), 28–41 (2019). https://doi.org/10.1109/MVT.2019.2921208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Matin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goudos, S.K., Matin, M.A. (2023). Wide Band THz Antenna Design Using Salp Swarm Algorithm for 6G Communications Systems. In: Matin, M.A. (eds) A Glimpse Beyond 5G in Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-13786-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13786-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13785-3

  • Online ISBN: 978-3-031-13786-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics