Skip to main content

A Characterization of Polynomial Time Computable Functions from the Integers to the Reals Using Discrete Ordinary Differential Equations

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13419))

Included in the following conference series:

Abstract

The class of functions from the integers to the integers computable in polynomial time has been recently characterized using discrete ordinary differential equations (ODE), also known as finite differences. Doing so, the fundamental role of linear (discrete) ODEs and classical ODE tools such as changes of variables to capture computability and complexity measures, or as a tool for programming was pointed out.

In this article, we extend the approach to a characterization of functions from the integers to the reals computable in polynomial time in the sense of computable analysis. In particular, we provide a characterization of such functions in terms of the smallest class of functions that contains some basic functions, and that is closed by composition, linear length ODEs, and a natural effective limit schema.

This work has been partially supported by ANR Project \(\partial IFFERENCE\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)

    Google Scholar 

  2. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Comput. Complex. 2, 97–110 (1992)

    Article  Google Scholar 

  3. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  4. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential equations compute all real computable functions on computable compact intervals. J. Complex. 23(3), 317–335 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bournez, O., Durand, A.: Recursion schemes, discrete differential equations and characterization of polynomial time computation. Technical report (2018, Submitted). A preliminary version coauthored with Sabrina Ouazzani. https://arxiv.org/abs/1810.02241

  6. Bournez, O., Durand, A.: Recursion schemes, discrete differential equations and characterization of polynomial time computation. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS. LIPIcs, vol. 138, pp. 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  7. Bournez, O., Pouly, A.: A survey on analog models of computation. In: Handbook of Computability and Complexity in Analysis. TAC, pp. 173–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59234-9_6

    Chapter  MATH  Google Scholar 

  8. Brattka, V.: Recursive characterization of computable real-valued functions and relations. Theoret. Comput. Sci. 162(1), 45–77 (1996)

    Article  MathSciNet  Google Scholar 

  9. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  Google Scholar 

  10. Clote, P.: Computational models and function algebras. In: Griffor, E.R. (ed.) Handbook of Computability Theory, Amsterdam, North-Holland, pp. 589–681 (1998)

    Google Scholar 

  11. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer, Cham (2013)

    MATH  Google Scholar 

  12. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science, North-Holland, Amsterdam, pp. 24–30 (1962)

    Google Scholar 

  13. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Mc-Graw-Hill, New York (1955)

    MATH  Google Scholar 

  14. Gelfond, A.: Calculus of Finite Differences (1971)

    Google Scholar 

  15. Gleich, D.: Finite calculus: a tutorial for solving nasty sums. Stanford University (2005)

    Google Scholar 

  16. Graham, R.L., Knuth, D.E., Patashnik, O., Liu, S.: Concrete mathematics: a foundation for computer science. Comput. Phys. 3(5), 106–107 (1989)

    Article  Google Scholar 

  17. Izadi, F., Aliev, N., Bagirov, G.: Discrete Calculus by Analogy. Bentham Science Publishers, Sharjah (2009)

    Google Scholar 

  18. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science, Birkhaüser, Boston (1991)

    Book  Google Scholar 

  19. Lau, G.: http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf. Course notes for the course “Discrete calculus”. http://gustavolau.com

  20. Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60178-3_84

    Chapter  Google Scholar 

  21. Leivant, D.: Predicative recurrence and computational complexity I: word recurrence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 320–343. Birkhäuser (1994)

    Google Scholar 

  22. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of Poly-Time. Fundamenta Informatica 19(1,2), 167–184 (1993)

    Article  MathSciNet  Google Scholar 

  23. Leivant, D., Marion, J.-Y.: Ramified recurrence and computational complexity II: substitution and poly-space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022277

    Chapter  Google Scholar 

  24. Ng, K.M., Tavana, N.R., Yang, Y.: A recursion theoretic foundation of computation over real numbers. J. Logic Comput. 31(7), 1660–1689 (2021)

    Article  MathSciNet  Google Scholar 

  25. Siegelmann, H.T.: Neural Networks and Analog Computation - Beyond the Turing Limit. Birkauser, Basel (1999)

    Book  Google Scholar 

  26. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)

    Article  MathSciNet  Google Scholar 

  27. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Cham (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bournez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanc, M., Bournez, O. (2022). A Characterization of Polynomial Time Computable Functions from the Integers to the Reals Using Discrete Ordinary Differential Equations. In: Durand-Lose, J., Vaszil, G. (eds) Machines, Computations, and Universality. MCU 2022. Lecture Notes in Computer Science, vol 13419. Springer, Cham. https://doi.org/10.1007/978-3-031-13502-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13502-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13501-9

  • Online ISBN: 978-3-031-13502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics