Skip to main content

Pathophysiology and Differentiation from Other Symptoms and Diseasess

  • Chapter
  • First Online:
Fatigue in Multiple Sclerosis
  • 498 Accesses

Abstract

Fatigue is considered the most common symptom, reported by up to 90% of people with multiple sclerosis, which can have a significant negative impact on quality of life, regardless of age, gender, disease duration, and extent of neurological impairment (Paul and Veauthier 2012; von Bismarck et al. 2018) and is also one of the main risk factors for reduced employment and early retirement. In addition, quite a few sufferers name fatigue as the most distressing symptom of MS. In contrast to the high prevalence and the considerable socio-medical relevance, the pathophysiology of fatigue in MS is at best only rudimentarily understood, which therefore makes causal therapeutic approaches difficult (Penner and Paul 2017). This is further complicated by the fact that fatigue is ultimately a subjectively experienced symptom that is difficult to objectify and quantify. Therefore, stricter definitional discrimination between fatigue as a subjective perception and objectively measurable performance in motor or cognitively demanding tasks (“load-dependent fatigability”) (Kluger et al. 2013) has been proposed, especially since “fatigue” and “fatigability” are not necessarily closely associated. Recently, an even more differentiated taxonomy has been proposed and also used in a fatiguing motor paradigm in MS fatigue. According to Drebinger, Kluger, Wolff, Enoka et al. (Drebinger et al. 2020; Wolff et al. 2019; Enoka and Duchateau 2016) different constructs can be distinguished: “state fatigue” (“perception of exertion in situations of effort-demanding activities that is physiologically transient and recovers with rest”) from “trait fatigue” (“pathological fatigue as frequent, prolonged, or constant disabling sensation of weariness and exhaustion over longer time frames, interfering with usual/desired activities”) and from “performance fatigability” (“reduced capacity to maintain activity which can be observed as a decline in performance measures with effort-demanding activities”). To what extent these constructs will contribute to a more precise classification of patient-reported fatigue remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktas O, Renner A, Huss A, et al. Serum neurofilament light chain. No clear relation to cognition and neuropsychiatric symptoms in stable MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(6):e885.

    Article  Google Scholar 

  • Bertoli M, Tecchio F. Fatigue in multiple sclerosis: does the functional or structural damage prevail? Mult Scler. 2020;26(14):1809–15.

    Article  Google Scholar 

  • von Bismarck O, Dankowski T, Ambrosius B, et al. Treatment choices and neuropsychological symptoms of a large cohort of early MS. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e446.

    Article  Google Scholar 

  • Braley TJ, Segal BM, Chervin RD. Obstructive sleep apnea and fatigue in patients with multiple sclerosis. J Clin Sleep Med. 2014;10(2):155–62.

    Article  Google Scholar 

  • Capone F, Motolese F, Rossi M, Musumeci G, Insola A, Di Lazzaro V. Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: a neurophysiological study. Mult Scler Relat Disord. 2019;39:101897.

    Article  Google Scholar 

  • Capone F, Motolese F, Falato E, Rossi M, Di Lazzaro V. The potential role of neurophysiology in the management of multiple sclerosis-related fatigue. Front Neurol. 2020;11:251.

    Article  Google Scholar 

  • Cederberg KLJ, Jeng B, Sasaki JE, Motl RW. Restless legs syndrome, sleep quality, and perceived cognitive impairment in adults with multiple sclerosis. Mult Scler Relat Disord. 2020;43:102176.

    Article  Google Scholar 

  • Chalah MA, Riachi N, Ahdab R, Ayache SS. Effects of left DLPFC versus right PPC tDCS on multiple sclerosis fatigue. J Neurol Sci. 2017;372:131–7.

    Article  Google Scholar 

  • Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci. 2000;179(S 1-2):34–42.

    Article  CAS  Google Scholar 

  • Chaves AR, Kelly LP, Moore CS, Stefanelli M, Ploughman M. Prolonged cortical silent period is related to poor fitness and fatigue, but not tumor necrosis factor, in multiple sclerosis. Clin Neurophysiol. 2019;130(4):474–83.

    Article  Google Scholar 

  • DeLuca J, Genova HM, Hillary FG, Wylie G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci. 2008;270(1–2):28–39.

    Article  Google Scholar 

  • Dobryakova E, DeLuca J, Genova HM, Wylie GR. Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-reward imbalance. J Int Neuropsychol Soc. 2013;19(8):849–53.

    Article  Google Scholar 

  • Dobryakova E, Genova HM, DeLuca J, Wylie GR. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front Neurol. 2015;6:52.

    Article  Google Scholar 

  • Dobryakova E, Hulst HE, Spirou A, et al. Fronto-striatal network activation leads to less fatigue in multiple sclerosis. Mult Scler. 2018;24(9):1174–82.

    Article  Google Scholar 

  • Draganski B, Kherif F, Klöppel S, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.

    Article  CAS  Google Scholar 

  • Drebinger D, Rasche L, Kroneberg D, et al. Association between fatigue and motor exertion in patients with multiple sclerosis-a prospective study. Front Neurol. 2020;11:208.

    Article  Google Scholar 

  • Elliott R, Friston KJ, Dolan RJ. Dissociable neural responses in human reward systems. J Neurosci. 2000;20(16):6159–65.

    Article  CAS  Google Scholar 

  • Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38.

    Article  Google Scholar 

  • Esposito F, Otto T, Zijlstra FR, Goebel R. Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS One. 2014;9(4):e94222.

    Article  Google Scholar 

  • Finke C, Pech LM, Sömmer C, et al. Dynamics of saccade parameters in multiple sclerosis patients with fatigue. J Neurol. 2012;259(12):2656–63.

    Article  Google Scholar 

  • Finke C, Schlichting J, Papazoglou S, et al. Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult Scler. 2015;21(7):925–34.

    Article  CAS  Google Scholar 

  • Gaede G, Tiede M, Lorenz I, et al. Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurol Neuroimmunol Neuroinflamm. 2017;5(1):e423.

    Article  Google Scholar 

  • Genova HM, Rajagopalan V, Deluca J, et al. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS One. 2013;8(11):e78811.

    Article  CAS  Google Scholar 

  • Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol. 2005;15(6):638–44.

    Article  CAS  Google Scholar 

  • Hanken K, Eling P, Hildebrandt H. Is there a cognitive signature for MS-related fatigue? Response to Feinstein. Mult Scler. 2016;22(4):575–6.

    Article  Google Scholar 

  • Hasselmann H, Bellmann-Strobl J, Ricken R, et al. Characterizing the phenotype of multiple sclerosis-associated depression in comparison with idiopathic major depression. Mult Scler. 2016;22(11):1476–84.

    Article  Google Scholar 

  • Hughes AJ, Dunn KM, Chaffee T. Sleep disturbance and cognitive dysfunction in multiple sclerosis: a systematic review. Curr Neurol Neurosci Rep. 2018;18(1):2.

    Article  Google Scholar 

  • Jaeger S, Paul F, Scheel M, et al. Multiple sclerosis-related fatigue: altered resting-state functional connectivity of the ventral striatum and dorsolateral prefrontal cortex. Mult Scler. 2019;25(4):554–64.

    Article  Google Scholar 

  • Kaminska M, Kimoff RJ, Benedetti A, et al. Obstructive sleep apnea is associated with fatigue in multiple sclerosis. Mult Scler. 2012;18(8):1159–69.

    Article  CAS  Google Scholar 

  • Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. 2013;80(4):409–16.

    Article  Google Scholar 

  • Kuchling J, Paul F. Visualizing the central nervous system: imaging tools for multiple sclerosis and Neuromyelitis Optica Spectrum disorders. Front Neurol. 2020;11:450.

    Article  Google Scholar 

  • Leocani L, Colombo B, Magnani G, et al. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement--EEG evidence. NeuroImage. 2001;13(6 Pt 1):1186–92.

    Article  CAS  Google Scholar 

  • Levit E, Bouley A, Baber U, Djonlagic I, Sloane JA. Brainstem lesions are associated with sleep apnea in multiple sclerosis. Mult Scler J Exp Transl Clin. 2020;6(4):2055217320967955.

    Google Scholar 

  • Mamoei S, Hvid LG, Boye Jensen H, et al. Neurophysiological impairments in multiple sclerosis-central and peripheral motor pathways. Acta Neurol Scand. 2020;142(5):401–17.

    Article  Google Scholar 

  • McNicholas N, Russell A, Nolan G, et al. Impact of obstructive sleep apnea on cognitive function in multiple sclerosis: a longitudinal study. J Sleep Res. 2020;13:e13159.

    Google Scholar 

  • Meltzer E, Sguigna PV, Subei A, et al. Retinal architecture and Melanopsin-mediated pupillary response characteristics: a putative pathophysiologic signature for the Retino-hypothalamic tract in multiple sclerosis. JAMA Neurol. 2017;74(5):574–82.

    Article  Google Scholar 

  • Morgante F, Dattola V, Crupi D, et al. Is central fatigue in multiple sclerosis a disorder of movement preparation? J Neurol. 2011;258(2):263–72.

    Article  Google Scholar 

  • Oberwahrenbrock T, Traber GL, Lukas S, et al. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e449.

    Article  Google Scholar 

  • Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother. 2018;19(1):31–43.

    Article  Google Scholar 

  • Palotai M, Guttmann CR. Brain anatomical correlates of fatigue in multiple sclerosis. Mult Scler. 2020;26(7):751–64.

    Article  Google Scholar 

  • Paul F. Pathology and MRI: exploring cognitive impairment in MS. Acta Neurol Scand. 2016;134(Suppl 200):24–33.

    Article  Google Scholar 

  • Paul F, Veauthier C. Fatigue in multiple sclerosis: a diagnostic and therapeutic challenge. Expert Opin Pharmacother. 2012;13(6):791–3.

    Article  CAS  Google Scholar 

  • Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nat Rev Neurol. 2017;13(11):662–75.

    Article  Google Scholar 

  • Roelcke U, Kappos L, Lechner-Scott J, et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology. 1997;48(6):1566–71.

    Article  CAS  Google Scholar 

  • Russo M, Crupi D, Naro A, et al. Fatigue in patients with multiple sclerosis: from movement preparation to motor execution. J Neurol Sci. 2015;351(1–2):52–7.

    Article  Google Scholar 

  • Saraste M, Bezukladova S, Matilainen M, et al. High serum neurofilament associates with diffuse white matter damage in MS. Neurol Neuroimmunol Neuroinflamm. 2021;1:e926.

    Article  Google Scholar 

  • Sevim S, Demirkıran M, Terzi M, Kaya D. Is RLS a harbinger and consequence of MS? Striking results of the ‘RELOMS-T’ study. Mult Scler Relat Disord. 2020;42:102055.

    Article  Google Scholar 

  • Singhal T, Cicero S, Pan H, et al. Regional microglial activation in the substantia nigra is linked with fatigue in MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e854.

    Article  Google Scholar 

  • Steens A, Heersema DJ, Maurits NM, Renken RJ, Zijdewind I. Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: a combined electrophysiological and neuroimaging study. NeuroImage. 2012;59(4):3110–8.

    Article  CAS  Google Scholar 

  • Tavazzi E, Jakimovski D, Kuhle J, et al. Serum neurofilament light chain and optical coherence tomography measures in MS: a longitudinal study. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e737.

    Article  Google Scholar 

  • Téllez N, Alonso J, Río J, et al. The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology. 2007;50(1):17–23.

    Article  Google Scholar 

  • Urbanek C, Weinges-Evers N, Bellmann-Strobl J, et al. Attention network test reveals alerting network dysfunction in multiple sclerosis. Mult Scler. 2010;16(1):93–9.

    Article  Google Scholar 

  • Veauthier C, Radbruch H, Gaede G, et al. Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. Mult Scler. 2011;17(5):613–22.

    Article  CAS  Google Scholar 

  • Veauthier C, Paul F. Fatigue in multiple sclerosis: which patient should be referred to a sleep specialist? Mult Scler. 2012;18(2):248–9.

    Article  Google Scholar 

  • Veauthier C, Gaede G, Radbruch H, Gottschalk S, Wernecke KD, Paul F. Treatment of sleep disorders may improve fatigue in multiple sclerosis. Clin Neurol Neurosurg. 2013;115(9):1826–30.

    Article  Google Scholar 

  • Veauthier C, Paul F. Sleep disorders in multiple sclerosis and their relationship to fatigue. Sleep Med. 2014;15(1):5–14.

    Article  Google Scholar 

  • Veauthier C, Gaede G, Radbruch H, Sieb JP, Wernecke KD, Paul F. Periodic limb movements during REM sleep in multiple sclerosis: a previously undescribed entity. Neuropsychiatr Dis Treat. 2015a;11:2323–9.

    Article  Google Scholar 

  • Veauthier C, Gaede G, Radbruch H, Wernecke KD, Paul F. Sleep disorders reduce health-related quality of life in multiple sclerosis (Nottingham health profile data in patients with multiple sclerosis). Int J Mol Sci. 2015b;16(7):16514–28.

    Article  Google Scholar 

  • Veauthier C, Hasselmann H, Gold SM, Paul F. The Berlin treatment algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue. EPMA J. 2016a;7(1):25.

    Article  Google Scholar 

  • Veauthier C, Gaede G, Radbruch H, Wernecke KD, Paul F. Poor sleep in multiple sclerosis correlates with Beck depression inventory values, but not with polysomnographic data. Sleep Disord. 2016b;2016:8378423.

    Article  Google Scholar 

  • Veauthier C, Paul F. Therapy of fatigue in multiple sclerosis : a treatment algorithm. Neurologist. 2016;87(12):1310–21.

    CAS  Google Scholar 

  • Veauthier C, Ryczewski J, Mansow-Model S, Otte K, Kayser B, Glos M, Schöbel C, Paul F, Brandt AU, Penzel T. Contactless recording of sleep apnea and periodic leg movements by nocturnal 3-D video and subsequent visual perceptual computing. Sci Rep. 2019;9(1):16812.

    Article  Google Scholar 

  • Vecchio F, Miraglia F, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F. Electroencephalography-derived sensory and motor network topology in multiple sclerosis fatigue. Neurorehabil Neural Repair. 2017;31(1):56–64.

    Article  Google Scholar 

  • Weinges-Evers N, Brandt AU, Bock M, et al. Correlation of self-assessed fatigue and alertness in multiple sclerosis. Mult Scler. 2010;16(9):1134–40.

    Article  Google Scholar 

  • Wolff W, Schüler J, Hofstetter J, Baumann L, Wolf L, Dettmers C, et al. Neural Plast. 2019:8527203.

    Google Scholar 

  • Zimmermann HG, Knier B, Oberwahrenbrock T, et al. Association of Retinal Ganglion Cell Layer Thickness with Future Disease Activity in patients with clinically isolated syndrome. JAMA Neurol. 2018;75(9):1071–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, F. (2023). Pathophysiology and Differentiation from Other Symptoms and Diseasess. In: Penner, IK. (eds) Fatigue in Multiple Sclerosis. Springer, Cham. https://doi.org/10.1007/978-3-031-13498-2_3

Download citation

Publish with us

Policies and ethics