Skip to main content

Sustainable Water Resources in Rural Areas: Impact of Land Use and Climate Change on Surface Water Groundwater Interactions at Lake Tana, Ethiopia

  • Chapter
  • First Online:
Sustainability of Water Resources

Part of the book series: Water Science and Technology Library ((WSTL,volume 116))

  • 357 Accesses

  • The original version of this chapter was revised: The Author name has been corrected from “Tibebe T. Tigabu” to “Tibebe B. Tigabu”. The correction to this chapter is available at https://doi.org/10.1007/978-3-031-13467-8_26

Abstract

Sustainable water resources management should guarantee that also future generations can fulfil their needs and that also natural systems still receive enough water. As we face multiple uses and stakeholders such as agriculture and food production, space for settlements and water supply, tourism, and nature conservation we need integrated modeling approaches to assess the complex impact of human activities on the water cycle. Additional pressures on water resources result from population growth and climate change. Ethiopia is a source region of the Nile River and famous for its water resources potential. The available annual average water per person per year is estimated to be 1575 m3. The Lake Tana accounts for 50% of the national fresh water. It has a total catchment area of about 15,321 km2 and hosts more than three million people. The climate is characterized by a high seasonality of rainfall with a rainy season between June and September. However, the scientific understanding of the hydrologic response to intensive agriculture, the interconnection of groundwater and surface water, and future perspectives of the water availability under global change is limited. Therefore, the main aim is to improve our understanding of past, present, and future hydrologic conditions in the Lake Tana Basin. To this end, hydrological modeling using SWAT (Soil and Water Assessment Tools) and a coupled surface water and groundwater model (SWAT-MODFLOW) were applied. Results from the models revealed a high connectivity of groundwater and surface water systems. Agricultural crops influence the hydrologic components differently. Groundwater recharge was relatively high on agricultural land covered by cereal crops, whereas surface runoff was significantly enhanced on cultivated land covered by legume crops like peas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 04 January 2023

    In the original version of the book, the first author’s first name was inadvertently published with a typo. The name has now been corrected from “Tibebe T. Tigabu” to “Tibebe B. Tigabu” in the chapter “Sustainable Water Resources in Rural Areas: Impact of Land Use and Climate Change on Surface Water Groundwater Interactions at Lake Tana, Ethiopia” updated version.

    The chapter and book have been updated with the changes.

References

  • Abbaspour K, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B (2015) A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752

    Google Scholar 

  • Abbas S, Xuan Y, Bailey R (2018) Improving river flow simulation using a coupled surface-groundwater model for integrated water resources management. EPiC Ser Eng 3:1–9

    Google Scholar 

  • Abebe S, Haji J, Ketema M (2014) Impact of disappearance of Lake Haramaya on the livelihood of the surrounding community: the case of Haramaya District in Oromia National Regional State, Ethiopia. J Econ Sustain Develop 5(18):141–148

    Google Scholar 

  • ADSWE (Amhara Design and Surevision Works Entreprise) (2017) Spatial data of land use and soil at the scale of 1: 50,000. Bahir Dar.

    Google Scholar 

  • Alemayehu T, McCartney M, Kebede S (2010) The water resource implications of planned development in the Lake Tana catchment Ethiopia. Ecohydrol Hydrobiol 10(2):211–221

    Google Scholar 

  • Arnold J, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol Process Int J 19(3):563–572

    ADS  Google Scholar 

  • Arnold J, Srinivasan R, Muttiah S, Williams J (1998) Large area hydrologic modeling and assessment part I: model development 1. JAWRA J Am Water Resour Assoc 34(1):73–89

    ADS  CAS  Google Scholar 

  • Asfaw A, Simane B, Hassen A, Bantider A (2018) Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather Clim Extremes 19:29–41

    Google Scholar 

  • Awange L, Gebremichae M, Forootan E, Wakbulcho G, Anyah R, Ferreira G, Alemayehu T (2014) Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv Water Resour 74:64–78

    ADS  Google Scholar 

  • Bailey T, Wible C, Arabi M, Records M, Ditty J (2016) Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol Process 30(23):4420–4433

    Google Scholar 

  • Bailey R, Rathjens H, Bieger K, Chaubey I, Arnold J (2017) SWATMOD-prep: graphical user interface for preparing coupled SWAT-MODFLOW simulations. JAWRA J Am Water Resour Assoc 53(2):400–410

    ADS  Google Scholar 

  • Berhanu B, Seleshi Y, and Melesse A (2014) Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development. In Nile River Basin. Springer, Cham, pp 97–117

    Google Scholar 

  • Beyene T, Lettenmaier D, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100(3–4):433–461

    ADS  Google Scholar 

  • Björklund G (2001) Water management in developing countries-policy and priorities for EU development cooperation. SIWI report, 12

    Google Scholar 

  • Bovolo C, Parkin G, Sophocleous M (2009) Groundwater resources, climate and vulnerability. Environ Res Lett 4(3):035001

    ADS  Google Scholar 

  • Brookes J, Carey C (2015) Ensure availability and sustainable management of water and sanitation for all. UN Chron 51(4):15–16

    Google Scholar 

  • Chebud Y, Melesse A (2009) Numerical modeling of the groundwater flow system of the Gumera sub-basin in Lake Tana basin Ethiopia. Hydrol Process Int J 23(26):3694–3704

    Google Scholar 

  • Chunn D, Faramarzi M, Smerdon B, Alessi D (2019) Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–Surface water interactions in West-Central Alberta. Water 11(1):110

    Google Scholar 

  • Condon L, Atchley A, Maxwell R (2020) Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat Commun 11:873. https://doi.org/10.1038/s41467-020-14688-0

    Article  ADS  CAS  Google Scholar 

  • Cuthbert M, Gleeson T, Moosdorf N, Befus K, Schneider A, Hartmann J, Lehner B (2019a) Global patterns and dynamics of climate–groundwater interactions. Nat Clim Chang 9(2):137

    ADS  Google Scholar 

  • Cuthbert M, Taylor R, Favreau G, Todd M, Shamsudduha M, Villholth K, MacDonald A, Scanlon B, Kotchoni D, Vouillamoz J, Lawson F (2019b) Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572(7768):230

    ADS  CAS  Google Scholar 

  • De Graaf I, Van Beek L, Wada Y, Bierkens M (2014) Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Adv Water Resour 64:21–33

    ADS  Google Scholar 

  • Derib S (2013) Balancing water availability and water demand in the Blue Nile: a case study of gumara watershed in Ethiopia. Rheinische Friedrich-Wilhelms-University Bonn

    Google Scholar 

  • Dessie M, Verhoest N, Admasu T, Pauwels V, Poesen J, Adgo E, Nyssen J (2014) Effects of the floodplain on river discharge into Lake Tana (Ethiopia). J Hydrol 519:699–710

    Google Scholar 

  • Dessie M, Verhoest N, Pauwels R, Adgo E, Deckers J, Poesen J, Nyssen J (2015) Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia. J Hydrol 522:174–186

    Google Scholar 

  • Desta H, Lemma B (2017) SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia. J Hydrol: Reg Stud 13:122–137

    Google Scholar 

  • Dile Y, Tekleab S, Ayana E, Gebrehiwot S, Worqlul A, Bayabil H, Yimam Y, Tilahun S, Daggupati P, Karlberg L, Srinivasan R (2018) Advances in water resources research in the Upper Blue Nile basin and the way forward: a review. J Hydrol 560:407–423

    CAS  Google Scholar 

  • Dile Y, Rockström J, Karlberg L (2016) Suitability of water harvesting in the Upper Blue Nile Basin, Ethiopia: A first step towards a mesoscale hydrological modeling framework. Advances in Meteorology

    Google Scholar 

  • Dupuit J (1863) Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméabls: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile. Dunod

    Google Scholar 

  • Ehtiat M, Mousavi S, Srinivasan R (2018) Groundwater modeling under variable operating conditions using SWAT, MODFLOW and MT3DMS: a catchment scale approach to water resources management. Water Resour Manage 32(5):1631–1649

    Google Scholar 

  • Elshamy M, Seierstad I, Sorteberg A (2009) Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol Earth Syst Sci 13:551–565

    ADS  Google Scholar 

  • FAO (2014) The food and agriculture organization Ethiopia Country programming framework, Revised Document, Addis Ababa

    Google Scholar 

  • Forchheime P (1986) Uber die ergiebigkeit von brummen, Anlagen und Sickerschlitzen. Zeitsch Archit Ing Ver Hannover 32:539–563

    Google Scholar 

  • Gebrehiwot S, Gärdenäs A, Bewket W, Seibert J, Ilstedt U, Bishop K (2014) The long-term hydrology of East Africa’s water tower: statistical change detection in the watersheds of the Abbay Basin. Reg Environ Change 14(1):321–331

    Google Scholar 

  • Gebre-selassie A,Bekele T (2012) A review of Ethiopian agriculture: roles, policy and small-scale farming systems, Available at: http://global-growing.org/en/content/review-ethiopian-agriculture-roles-policy-and-small-scale-farming-systems

  • Goderniaux P, Brouyère S, Fowler H, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1–2):122–138

    Google Scholar 

  • Gumindoga W, Rientjes T, Haile A, Dube T (2014) Predicting streamflow for land cover changes in the Upper Gilgel Abay River Basin, Ethiopia: a TOPMODEL based approach. Phys Chem Earth Parts A/B/C 76–78:3–15

    ADS  Google Scholar 

  • Guzman J, Moriasi D, Gowda P, Steiner J, Starks P, Arnold J, Srinivasan R (2015) A model integration framework for linking SWAT and MODFLOW. Environ Model Softw 73:103–116

    Google Scholar 

  • Harbaugh A (2005) MODFLOW-2005, the US geological survey modular ground-water model: the ground-water flow process (pp. 6-A16). Reston, VA, US Department of the Interior, US Geological Survey

    Google Scholar 

  • Hashemi H, Uvo C, Berndtsson R (2015) Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol Earth Syst Sci 19(10):4165–4181

    ADS  Google Scholar 

  • Hatfield J (2014) Environmental impact of water use in agriculture. Agron J 107(4):1554–1556

    Google Scholar 

  • Kebede S, Travi Y, Alemayehu T, Ayenew T (2005) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River Ethiopia. Appl Geochem 20(9):1658–1676

    ADS  CAS  Google Scholar 

  • Kebede S (2010) Groundwater in Ethiopia: occurrence, drought proofing and technology options. Addis Ababa University, Department of Earth Sciences. Retrieved on July, 10, p 2013

    Google Scholar 

  • Kebede S (2012) Groundwater in Ethiopia: features, numbers and opportunities. Springer Science and Business Media

    Google Scholar 

  • Kidmose J, Refsgaard J, Troldborg L, Seaby L, Escrivà M (2013) Climate change impact on groundwater levels: ensemble modelling of extreme values. Hydrol Earth Syst Sci 17(4):1619–1634

    ADS  Google Scholar 

  • Kim U, Kaluarachchi J (2009) Climate change impacts on water resources in the upper Blue Nile River Basin, Ethiopia 1. JAWRA J Am Water Resour Assoc 45(6):1361–1378

    ADS  Google Scholar 

  • Kim N, Chung I, Won Y, Arnold JG (2008) Development and application of the integrated SWAT–MODFLOW model. J Hydrol 356(1–2):1–16

    Google Scholar 

  • Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424:264–277

    Google Scholar 

  • Koch M,Cherie N (2013) SWAT modeling of the impact of future climate change on the hydrology and the water resources in the upper Blue Nile River basin, Ethiopia. In: Proceedings of the 6th international conference on water resources and environment research, ICWRER, Vol 6(6), pp 488–523

    Google Scholar 

  • Kollet S, Maxwell R (2006) Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958

    ADS  Google Scholar 

  • Kundzewicz Z, Mata L, Arnell N, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53(1):3–10

    Google Scholar 

  • Markstrom S, Niswonger R, Regan R, Prudic D, Barlow, P (2008) GSFLOW-coupled ground-water and surface-water FLOW model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005): U.S. Geological Survey Techniques and Methods 6-D1, https://doi.org/10.3133/tm6D1, p 240

  • Melesse A, Abtew W, Setegn S, Dessalegne T (2011) Hydrological variability and climate of the Upper Blue Nile River basin. In: Nile River Basin. Springer, Dordrecht, pp 3–37

    Google Scholar 

  • MoWIE (Ministry of Water, Irrigation and Electricity of Ethiopian Government) (2016) Daily streamflow. Addis Ababa, The Department of Hydrology

    Google Scholar 

  • Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil and water assessment tool theoretical documentation version 2009, Texas

    Google Scholar 

  • Niswonger R, Panday S, Ibaraki M (2011) MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geol Survey Tech Methods 6(A37):44

    Google Scholar 

  • NMA (National Meteorological Service Agency of Ethiopian Government) (2016) Daily weather data. Addis Ababa. Meteorological Data Management and Basic Climatology Case Team

    Google Scholar 

  • Pachauri R, Allen M, Barros V, Broome J, Cramer W, Christ R, Church J, Clarke L, Dahe Q, Dasgupta P, Dubash N (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc, p 151

    Google Scholar 

  • Park S, Nielsen A, Bailey R, Trolle D, Bieger K (2019) A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environ Model Softw 111:493–497

    Google Scholar 

  • Parris K (2011) Impact of Agriculture on Water Pollution in OECD Countries: recent trends and future prospects impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int J Water Resour Dev 27:33–55

    Google Scholar 

  • Pfannerstill M, Guse B, Fohrer N (2014) A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrol Process 28(22):5599–5612

    ADS  Google Scholar 

  • Polanco E, Fleifle A, Ludwig R, Disse M (2017) Improving SWAT model performance in the Upper Blue Nile River Basin using meteorological data integration and catchment scaling. Hydrol Earth Syst Sci Discuss 21:1–28

    Google Scholar 

  • Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999

    ADS  CAS  Google Scholar 

  • Setegn S, Rayner D, Melesse A, Dargahi B, Srinivasan R (2011) Impact of climate change on the hydroclimatology of Lake Tana Basin Ethiopia. Water Resour Res 47(4):W04511

    ADS  Google Scholar 

  • Setegn S, Srinivasan R, Dargahi B (2008) Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrol J 2(1)

    Google Scholar 

  • Shao G, Zhang D, Guan Y, Xie Y, Huang F (2019) Application of SWAT model with a modified groundwater module to the semi-arid Hailiutu River Catchment Northwest China. Sustainability 11(7):2031

    Google Scholar 

  • Sutanudjaja E, Van Beek L, De Jong S, van Geer F, Bierkens M (2011) Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. Hydrol Earth Syst Sci 15:2913–2935

    ADS  Google Scholar 

  • Tarhule A (2017) The future of water: Prospects and challenges for water management in the 21st century. In: Competition for water resources. Elsevier, pp 442–454

    Google Scholar 

  • Taye M, Ntegeka V, Ogiramoi N, Willems P (2011) Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol Earth Syst Sci 15(1):209–222

    ADS  Google Scholar 

  • Taye M, Willems P, Block P (2015) Implications of climate change on hydrological extremes in the Blue Nile basin: a review. J Hydrol: Reg Stud 4:280–293

    Google Scholar 

  • Taylor R, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famigliett J, Edmunds M, Konikow L (2013) Ground water and climate change. Nat Clim Chang 3(4):322

    ADS  Google Scholar 

  • Tegegne G, Hailu D, Aranganathan S (2013) Lake Tana reservoir water balance model. Int J Appl Innovation Eng Manag (IJAIEM) 2(3):474–478. Available at: www.ijaiem.org

  • Tekleab S, Mohamed Y, Uhlenbrook S (2013) Hydro-climatic trends in the Abay/upper Blue Nile basin, Ethiopia. Phys Chem Earth Parts A/B/C 61:32–42

    ADS  Google Scholar 

  • Teshome M (2016) Farmers’ vulnerability to climate change-induced water poverty in spatially different agro-ecological areas of northwest Ethiopia. J Water Clim Change 7(1):142–158

    Google Scholar 

  • Tigabu T, Wagner P, Hörmann G, Fohrer N (2019) Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin Ethiopia. Hydrol Res 50(5):1376–1396

    Google Scholar 

  • Tigabu T, Hörmann G, Wagner P, Fohrer N (2020a) Statistical analysis of rainfall and streamflow time series in the Lake Tana Basin, Ethiopia. J Water Clim Change 11(1):258–273

    Google Scholar 

  • Tigabu T, Wagner P, Hörmann G, Fohrer N (2020b) Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile Ethiopia. Hydrol Res 51(6):1537–1559

    Google Scholar 

  • Tigabu T, Wagner P, Hörmann G, Kiesel J, Fohrer N (2021) Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia. J Water Clim Change 12(5):1544–1563

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) World Population Prospects 2019: Highlights (ST/ESA/SER. A/423)

    Google Scholar 

  • USGS (US Geological Survey) (2016) Shuttle radar topography mission (SRTM) 1 arc-second global digital elevation model (DEM), USGS EarthExplorer, http://earthexplorer.usgs.gov). Accessed 24 Jan 2016

  • Van Griensven A, Ndomba P, Yalew S, Kilonzo F (2012) Critical review of SWAT applications in the upper Nile basin countries. Hydrol Earth Syst Sci 16(9):3371–3381

    ADS  Google Scholar 

  • Vijverberg J, Sibbing F,Dejen E (2009) Lake Tana: Source of the Blue Nile. In The Nile. Springer, Dordrecht, pp 163–192

    Google Scholar 

  • Wada Y, Van Beek L, Bierkens M (2011) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15(12):3785–3808

    ADS  Google Scholar 

  • Wagner P, Reichenau T, Kumar S, Schneider K (2015) Development of a new downscaling method for hydrologic assessment of climate change impacts in data scarce regions and its application in the Western Ghats India. Reg Environ Change 15(3):435–447

    Google Scholar 

  • Watts G, Battarbee R, Bloomfield J, Crossman J, Daccache A, Durance I, Elliott J, Garner G, Hannaford J, Hannah D, Hess T (2015) Climate change and water in the UK–past changes and future prospects. Prog Phys Geogr 39(1):6–28

    Google Scholar 

  • Woldesenbet T, Elagib N, Ribbe L, Heinrich J (2017) Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci Total Environ 575:724–741

    ADS  CAS  Google Scholar 

  • World Bank (2006) Ethiopia: Managing water resources to maximize sustainable growth

    Google Scholar 

  • Worqlul A, Collick A, Rossiter D, Langan S, Steenhuis S (2015) Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. CATENA 129:76–85

    Google Scholar 

  • Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205–214

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding for a doctoral study grant from the Federal State of Schleswig-Holstein, Germany, through the Landesgraduiertenstipendium of Kiel University. We are also thankful to Amahra Design and Supervision Works Enterprise (ADSWE), the Ministry of Water, Irrigation, and Electricity and the National Meteorological Service Agency of the Government of Ethiopia for their support by providing land use/cover, soil, hydrological and climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibebe B. Tigabu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tigabu, T.B., Wagner, P.D., Hörmann, G., Fohrer, N. (2022). Sustainable Water Resources in Rural Areas: Impact of Land Use and Climate Change on Surface Water Groundwater Interactions at Lake Tana, Ethiopia. In: Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D. (eds) Sustainability of Water Resources. Water Science and Technology Library, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-031-13467-8_24

Download citation

Publish with us

Policies and ethics