Skip to main content

State Complexity of Binary Coded Regular Languages

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13439))

Included in the following conference series:

Abstract

For the given non-unary input alphabet \(\varSigma \), a maximal prefix code h mapping strings over \(\varSigma \) to binary strings, and an optimal deterministic finite automaton (DFA) \(\mathcal {A}\) with n states recognizing a language \(\mathcal {L}\) over \(\varSigma \), we consider the problem of how many states we need for an automaton \(\mathcal {A}'\) that decides membership in \(h(\mathcal {L})\), the binary coded version of \(\mathcal {L}\). Namely, \(\mathcal {A}'\) accepts binary inputs belonging to \(h(\mathcal {L})\) and rejects binary inputs belonging to \(h(\mathcal {L}^{\scriptscriptstyle \mathrm {C}})\), where \(\mathcal {L}^{\scriptscriptstyle \mathrm {C}}\) is the complement of \(\mathcal {L}\). The outcome on inputs that are not valid binary codes for any string in \(\varSigma ^{*}\) can be arbitrary: \(\mathcal {A}'\) may accept, reject, or halt in a “don’t care” state. We show that any optimal deterministic don’t care finite automaton (dcDFA) \(\mathcal {A}'\) solving this promise problem uses at most \((\Vert {\varSigma }\Vert -1){\cdot }n\) states but at least n states. We also show that, for each non-unary input alphabet \(\varSigma \), there exists a maximal binary prefix code h such that, for each \(n\ge 2\) and for each N in range from n to \((\Vert {\varSigma }\Vert -1){\cdot }n\), there exists a language \(\mathcal {L}\) over \(\varSigma \) such that the optimal DFA recognizing \(\mathcal {L}\) uses exactly n states and any optimal dcDFA for solving the above promise problem uses exactly N states. Thus, we have the complete state hierarchy for deciding membership in the binary coded version of \(\mathcal {L}\), with no magic numbers in between the lower and upper bounds.

Supported by the Slovak grant contract VEGA 1/0177/21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    State complexity of homomorphisms depends on the length of the images of symbols and is somewhat difficult to define in the general case. Perhaps the only existing related result is the state complexity of projections (that is, homomorphisms mapping each symbol either to itself or to \(\varepsilon \)), which was determined to be \(3/4{\cdot }2^n-1\) in [12].

  2. 2.

    Throughout the paper, \(\Vert {X}\Vert \) denotes the cardinality of the set X.

  3. 3.

    This phenomenon can be seen in Fig. 2, where we have “3”\(\mathop {\longrightarrow }\limits ^{a_4}\)“5” for \(\mathcal {A}_{{\scriptscriptstyle \varSigma },n,g,k}\). Since \(h(a_4)=\) “00001”, this corresponds to for \(\mathcal {A}'_{{\scriptscriptstyle \varSigma },n,g,k}\), passing twice through .

References

  1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Birget, J.-C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bruyère, V.: Maximal codes with bounded deciphering delay. Theoret. Comput. Sci. 84, 53–76 (1991)

    Article  Google Scholar 

  4. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5_26

    Chapter  Google Scholar 

  5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205, 1652–1670 (2007)

    Article  MathSciNet  Google Scholar 

  6. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006). https://doi.org/10.1007/11685654_12

    Chapter  Google Scholar 

  7. Holzer, M., Rauch, C.: The range of state complexities of languages resulting from the cascade product—the unary case (extended abstract). In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 90–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_8

    Chapter  MATH  Google Scholar 

  8. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston (2001)

    MATH  Google Scholar 

  9. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Proceedings of Descriptional Complexity of Formal Systems, pp. 170–181. IFIP & University, Milano (2005)

    Google Scholar 

  10. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFA’s that are equivalent to \(n\)-state NFA’s. Theoret. Comput. Sci. 237, 485–494 (2000)

    Article  MathSciNet  Google Scholar 

  11. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput. Sci. 22, 331–344 (2011)

    Article  MathSciNet  Google Scholar 

  12. Jirásková, G., Masopust, T.: On a structural property in the state complexity of projected regular languages. Theoret. Comput. Sci. 449, 93–105 (2012)

    Article  MathSciNet  Google Scholar 

  13. Moreira, N., Pighizzini, G., Reis, R.: Optimal state reductions of automata with partially specified behaviors. Theoret. Comput. Sci. 658, 235–245 (2017)

    Article  MathSciNet  Google Scholar 

  14. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Trans. Electron. Comput. 3, 356–367 (1959)

    Article  Google Scholar 

  15. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE Trans. Comput. C–22, 1099–1102 (1973)

    Article  MathSciNet  Google Scholar 

  16. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Geffert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geffert, V., Pališínová, D., Szabari, A. (2022). State Complexity of Binary Coded Regular Languages. In: Han, YS., Vaszil, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2022. Lecture Notes in Computer Science, vol 13439. Springer, Cham. https://doi.org/10.1007/978-3-031-13257-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13257-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13256-8

  • Online ISBN: 978-3-031-13257-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics