Skip to main content

Evaluation of Different Routes for Manufacturing of Micro Process Devices

  • Conference paper
  • First Online:
1st International Conference on Engineering Manufacture 2022

Abstract

Micro process devices offer a high surface-to volume ratio, e.g. facilitating high amounts of heat transfer. By this, strongly exothermic chemical reactions may be transferred from batch to continuous processes, reaching higher product yield and decreasing by-products. For manufacturing of micro process devices, microstructuring and joining of the apparatuses accounts for the overwhelming part of the cost. Various technologies can be used for microstructuring. They have certain constraints, advantages and disadvantages, which should be considered by the designer in advance. Due to small wall thickness between reaction and cooling passages, and for reasons of strength and corrosion resistance, additional materials, such as those common in brazing, should be avoided. Thus, mainly diffusion bonding and laser welding are applicable for joining. Again, these technologies has certain constraints, advantages and disadvantages, which may interact with microstructuring technologies. Experience has shown that the selection of suitable methods by the designer determines success or failure of manufacturing of micro process devices. For this reason, in this publication special features of the above-mentioned technologies and dependencies are discussed and illustrated by several practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gietzelt, T., Hüll, A., Toth, V., Messerschmidt, F., Thelen, R.: Impact of scratch depth on vacuum tightness of diffusion bonded parts. Mat.-wiss. u. Werkstofftech. 49, 185–192 (2018). https://doi.org/10.1002/mawe.201700154

    Article  Google Scholar 

  2. nashira Hard Metals: Eigenschaften des Hardmetalls. Technische Merkmale. https://www.nashira-hm.it/de/die-eigenschaften-des-hartmetalls/. Last accessed 24 May 2022

  3. Sailer, T.: Ultrafeinkörnige Hartmetalle mit Co-Binder und alternativen Bindersystemen - Korrelation von Mikrostruktur und mechanischem Verhalten unter monoton ansteigender und zyklisch wechselnder Beanspruchung. Ph.D. thesis, Univ. Erlangen-Nürnberg (2002)

    Google Scholar 

  4. Ceratizit Group: Carbide is a matter of confidence. https://www.ceratizit.com/int/de/media/downloads.html#/sections/item0-Downloads_Hard_Material_Solutions. Last accessed 24 May 2022

  5. Schatt, W. Wieters, K.-P., Kieback, B.: Pulvermetallurgie, 2. Ed., Springer, Berlin, Heidelberg, New York (2007), chap. 17.2, 510ff. ISBN-13 978-3-540-23652-8

    Google Scholar 

  6. Moldino, Quickfinder-Vollversion 1.16.0.3. https://www.moldino.eu/. Last accessed 24 May 2022

  7. Bandapalli, C., Sutaria, B.M., Bhatt, D.V.P., Singh, K.K.: Tool wear analysis of micro end mills—uncoated and PVD coated TiAlN & AlTiN in high speed micro milling of titanium alloy—Ti-0.3Mo-0.8Ni. Proc. CIRP. 77, 626–629 (2018). https://doi.org/10.1016/j.procir.2018.08.191

  8. Hollek, H., Schier, V.: Multilayer PVD coatings for wear protection. Surf. Coat. Technol. 76–77, 328–336 (1995). https://doi.org/10.1016/0257-8972(95)02555-3

    Article  Google Scholar 

  9. Bienk, E. J., Reitz, H., Mikkelsen, N. J.: Wear and friction properties of hard PVD coatings. Surf. Coat. Technol. 76–77, 475–480 (1995). https://www.sciencedirect.com/science/article/pii/0257897295024980

  10. Chowdhury, S., Beake, B.D., Yamamoto, K., Bose, B., Aguirre, M., Fox-Rabinovivh, G.S., Veldhuis, S.C.: Improvement of wear performance of nano-multilayer PVD coatings under dry hard end milling conditions based on their architectural development. Coatings 8, 59 (2018). https://doi.org/10.3390/coatings8020059

  11. GDE-Werkzeuge GmbH. https://www.gde-werkzeuge.de/. Last accessed 24 May 2022

  12. HAM Präzision. https://ham-tools.com/. Last accessed 24 May 2022

  13. Mössner. https://moessner-gmbh.com/de/zerspanen. Last accessed 24 May 2022

  14. Medidia. https://www.medidia.eu/. Last accessed 24 May 2022

  15. Wan, Z., Li, Y., Tang, H., Deng, W., Tang, Y.: Characteristics and mechanism of top burr formation in slotting microchannels using arrayed thin slotting cutters. Precis. Eng. 38, 28–35 (2014). https://doi.org/10.1016/j.precisioneng.2013.06.008

    Article  Google Scholar 

  16. Herz Ätztechnik. https://www.aetztechnik-herz.de/. Last accessed 24 May 2022

  17. Fotofab. https://fotofab.com. Last accessed 24 May 2022

  18. Micrometal. https://www.micrometal.de/. Last accessed 24 May 2022

  19. Precision Micro. http://www.precisionmicro.de. Last accessed 24 May 2022

  20. etchform. https://www.etchform.nl. Last accessed 24 May 2022

  21. Gandhi, S.V., Chanmanwar, R.M.: A study of variation in MRR influenced by work piece positioning on copper and stainless steel during wet chemical machining. In: ATSMDE2017 (2017). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3101587

  22. Trumpf GmbH + Co KG, TrufiberCompact-Series. https://www.trumpf.com/de_DE/produkte/laser/faserlaser/trufiber-p-compact/. Last accessed 24 May 2022

  23. Harumoto, T., Yamashita, Y., Ohashi, O., Ishiguro, T.: Influence of cold rolling on diffusion bondability of SUS316L stainless steel sheets. Mater. Trans. 55(3), 633–636 (2014). https://doi.org/10.2320/matertrans.M2013405

    Article  Google Scholar 

  24. Katoh, M., Sato, N., Shiratori, T., Suzuki, Y.: Reduction of diffusion bonding temperature with recrystallization at austenitic stainless steel. ISIJ Int. 57(5), 883–887 (2017). https://doi.org/10.2355/isijinternational.ISIJINT-2016-693

    Article  Google Scholar 

  25. Saranam, V.R., Paul, B.K.: Feasibility of using diffusion bonding for producing hybrid printed circuit heat exchangers for nuclear energy applications. Procedia Manuf. 26, 560–569 (2018). https://doi.org/10.1016/j.promfg.2018.07.066

    Article  Google Scholar 

  26. Southall, D., Le Pierres, R., Dewson, S.J.: Design considerations for compact heat exchangers. United States: American Nuclear Society - ANS (2008). https://inis.iaea.org/search/search.aspx?orig_q=RN:42096311

  27. Xue, K., Tian, W., Yan, S., Li, H., Li. P.: Variations in mechanical properties of RAFM steel under vacuum diffusion welding with pre-deformation and subsequent heat treatment. Fusion Eng. Des. 152 (2020). https://doi.org/10.1016/j.fusengdes.2020.111470

  28. Takahashi, Y., Nakamura, T., Nishiguchi, K.: Dissolution process of surface oxide film during diffusion bonding of metals. J. Mater. Sci. 27, 485–498 (1992). https://link.springer.com/article/https://doi.org/10.1007/BF00543942

  29. Machet, A., et al.: XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy. Electrochim. Acta. 49, 3957–3964 (2004). https://doi.org/10.1016/j.electacta.2004.04.032

    Article  Google Scholar 

  30. Shih, C.-C., et al.: Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corr. Sci. 46, 427–441 (2004). https://doi.org/10.1016/S0010-938X(03)00148-3

    Article  Google Scholar 

  31. Hakiki, N.E., Montemor, M.F., Ferreira, M.G.S., da Cunha Belo, M.: Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corr. Sci. 42, 687–702 (2000). https://doi.org/10.1016/S0010-938X(99)00082-7

    Article  Google Scholar 

  32. Gietzelt, T., Toth, V., Weingärtner, T.: Impacts of layout, surface condition and alloying elements on diffusion welding of micro process devices. Materialwiss. Werkstofftech. 9, 1070–1084 (2019). https://doi.org/10.1002/mawe.201800197

    Article  Google Scholar 

  33. Zhu, Z.-Y. et al.: Effect of aging treatment on intergranular corrosion properties of ultra-low iron 625 alloy. Int. J. Corros. (2019). Article ID 9506401. https://doi.org/10.1155/2019/9506401

  34. Bansod, A.V., Patil, A.P., Moon, A.P., Khograga, N.N.: Intergranular corrosion behavior of low-nickel and 304 austenitic stainless steels. J. Mater. Eng. Perform. 25(9), 3615–3626 (2016). https://doi.org/10.1007/s11665-016-2221-2

    Article  Google Scholar 

  35. Gietzelt, T., Eichhorn, L., Wunsch, T., Schorle, C., Kaut, M., Dittmeyer, R.: Laser welding of multilayer stacks made of thin-sheet material for the manufacture of microstructured devices for process engineering. Chem. Ing. Tech. 85(10), 1624–1631 (2013). https://doi.org/10.1002/cite.201200181

    Article  Google Scholar 

  36. Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P., Dittmeyer, R.: Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: experimental demonstration. Int. J. Hydrogen Energy 39(31), 18058–18068 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.091

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Helmholtz Program MTET (Materials and Technologies for the Energy Transition) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gietzelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gietzelt, T., Toth, V., Wunsch, T., Kraut, M. (2023). Evaluation of Different Routes for Manufacturing of Micro Process Devices. In: da Silva, L.F.M., Ravi Kumar, D., Reis Vaz, M.d.F., Carbas, R.J.C. (eds) 1st International Conference on Engineering Manufacture 2022. Proceedings in Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-031-13234-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13234-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13233-9

  • Online ISBN: 978-3-031-13234-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics