Skip to main content

Nitric Oxide, Its Role in Diabetes Mellitus and Methods to Improve Endothelial Function

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Vascular disease plays a critical role in morbidity and mortality associated with diabetes mellitus. Nitric oxide is an essential molecule involved in vascular homeostasis. It is generated by the family of enzymes known as NO synthases, which include endothelial NOS (eNOS), neuronal NOS (nNOS), and cytokine-inducible NOS (iNOS). NO effects include maintenance of resting vascular tone, production and release of other vasodilator substances responsible for endothelial-dependent vasodilation, modulation of expression of endothelial vasoconstrictors and growth factors, maintaining integrity of the vascular endothelium through platelet and leukocyte interaction with the vessel wall. Besides its positive effects, NO also contributes to the atherosclerotic plaque formation in certain circumstances.

Numerous studies have demonstrated an important role of NO in the pathogenesis of diabetic vascular complications. The proposed mechanisms by which diabetes affects endothelial function include changes in glucose metabolism, alterations in insulin signaling pathways, impaired NO synthesis due to oxidative stress, decreased availability of substrates and cofactors of NO synthesis, eNOS modifications causing its uncoupling, leading to superoxide generation and peroxynitrite formation, presence of endogenous eNOS inhibitors, and increased NO breakdown. Diabetes comorbidities, including hypertension and dyslipidemia, further exacerbate vascular dysfunction in diabetes. Despite in vitro and in vivo experiments suggesting that certain substances (e.g., vitamins C and E, tetrahydrobiopterin, l-arginine, estrogens) can cause improvement in endothelial function, the data demonstrating their clinical effectiveness is lacking. On the other hand, certain known medications (ACEi, ARBs, statins, many diabetes medications) have known positive effect on endothelial function and improve outcomes in diabetic patients. Knowing mechanisms of NO metabolism in diabetes allows to find new therapeutic targets for reversal of endothelial dysfunction and improvement in clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease C, Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States. Washington, DC: US Department of Health and Human Services; 2014. p. 1–32.

    Google Scholar 

  2. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia MJ, McNamara PM, Gordon T, Kannell WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow up study. Diabetes. 1974;23(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  4. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A, Mathiesen ER. Natural history of diabetic complications: early detection and progression. Diabet Med. 1991;8(2 S):S33–S7.

    Article  PubMed  Google Scholar 

  5. Deckert T, Yokoyama H, Mathiesen ER, Rønn B, Jensen TJ, Feldt-Rasmussen BF, et al. Microalbuminuria as predictor of atherosclerotic vascular disease in IDDM. Ugeskr Laeger. 1997;159:3010.

    CAS  PubMed  Google Scholar 

  6. Zatz R, Brenner BM. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med. 1986;80:443.

    Article  CAS  PubMed  Google Scholar 

  7. Epstein FH, Merimee TJ. Diabetic retinopathy: a synthesis of perspectives. N Engl J Med. 1990;322:978.

    Article  Google Scholar 

  8. Beach KW, Strandness DE. Arteriosclerosis obliterans and associated risk factors in insulin-dependent and non-insulin-dependent diabetes. Diabetes. 1980;29:882.

    Article  CAS  PubMed  Google Scholar 

  9. Keen H, Jarrett RJ. The WHO multinational study of vascular disease in diabetes: 2. Macrovascular disease prevalence. Diabetes Care. 1979;2:187.

    Article  CAS  PubMed  Google Scholar 

  10. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373.

    Article  CAS  PubMed  Google Scholar 

  11. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989;3(9):2007–18.

    Article  CAS  PubMed  Google Scholar 

  12. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9625.

    Article  Google Scholar 

  13. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524.

    Article  CAS  PubMed  Google Scholar 

  14. Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, et al. Nitric oxide synthase isozymes characterization, purification, molecular cloning, and functions. Hypertension. 1994;23:1121.

    Article  PubMed  Google Scholar 

  15. Barbato JE, Tzeng E. Nitric oxide and arterial disease. J Vasc Surg. 2004;40(1):187–93.

    Article  PubMed  Google Scholar 

  16. Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol. 2018;15(5):292–316.

    Article  CAS  PubMed  Google Scholar 

  17. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6(2):150–66.

    Article  CAS  PubMed  Google Scholar 

  18. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res. 1999;84(9):1020–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dimmeler S, Lottspeich F, Brune B. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3- phosphate dehydrogenase. J Biol Chem. 1992;267:16771.

    Article  CAS  PubMed  Google Scholar 

  20. Griffith TM, Edwards DH, Davies RL, Harrison TJ, Evans KT. EDRF coordinates the behaviour of vascular resistance vessels. Nature. 1987;329:442.

    Article  CAS  PubMed  Google Scholar 

  21. Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994;89:3025.

    Article  Google Scholar 

  22. Lowenstein CJ, Dinerman JL, Snyder SH. Nitric oxide: a physiologic messenger. Ann Intern Med. 1994;120:227.

    Article  CAS  PubMed  Google Scholar 

  23. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989;65:1.

    Article  CAS  PubMed  Google Scholar 

  24. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol. 2017;219(1):22–96.

    Article  CAS  Google Scholar 

  25. Kourembanas S, McQuillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Investig. 1993;92:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood. 1981;57:946.

    Article  CAS  PubMed  Google Scholar 

  27. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2:997.

    Article  CAS  PubMed  Google Scholar 

  28. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol Heart Circ Physiol. 1992;262:H611.

    Article  CAS  Google Scholar 

  29. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Investig. 1989;83:1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marks DS, Vita JA, Folts JD, Keaney JF, Welch GN, Loscalzo J. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Investig. 1995;96:2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taguchi J, Abe J, Okazaki H, Takuwa Y, Kurokawa K. L-arginine inhibits neointimal formation following balloon injury. Life Sci. 1993;53:PL387.

    Article  CAS  PubMed  Google Scholar 

  32. Cohen RA. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis. 1995;38:105.

    Article  CAS  PubMed  Google Scholar 

  33. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35.

    Article  PubMed  Google Scholar 

  34. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  35. Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, et al. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Investig. 2002;110(3):331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, et al. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother. 2018;97:423–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, et al. Inducible nitric oxide synthase: good or bad? Biomed Pharmacother. 2017;93:370–5.

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi T, Li Y, Shih DM, Wang X, Laubach VE, Matsumoto AH, et al. Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice. Life Sci. 2006;79(6):525–31.

    Article  CAS  PubMed  Google Scholar 

  39. Seddon MD, Chowienczyk PJ, Brett SE, Casadei B, Shah AM. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation. 2008;117(15):1991–6.

    Article  CAS  PubMed  Google Scholar 

  40. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, et al. Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation. 2009;119(20):2656–62.

    Article  CAS  PubMed  Google Scholar 

  41. Schödel J, Padmapriya P, Marx A, Huang PL, Ertl G, Kuhlencordt PJ. Expression of neuronal nitric oxide synthase splice variants in atherosclerotic plaques of apoE knockout mice. Atherosclerosis. 2009;206(2):383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hudspeth B. The burden of cardiovascular disease in patients with diabetes. Am J Manag Care. 2018;24(13):S268–S72.

    PubMed  Google Scholar 

  43. Meraji S, Jayakody L, Senaratne MPJ, Thomson AB, Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987;36:978.

    Article  CAS  PubMed  Google Scholar 

  44. Oyama Y, Kawasaki H, Hattori Y, Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol. 1986;132:75.

    Article  CAS  PubMed  Google Scholar 

  45. Mayhan WG, Simmons LK, Sharpe GM. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol Heart Circ Physiol. 1991;260:H319.

    Article  CAS  Google Scholar 

  46. Abiru T, Watanabe Y, Kamata K, Miyata N, Kasuya Y. Decrease in endothelium-dependent relaxation and levels of cyclic nucleotides in aorta from rabbits with alloxan-induced diabetes. Res Commun Chem Pathol Pharmacol. 1990;68:13.

    CAS  PubMed  Google Scholar 

  47. Fortes ZB, Leme JG, Scivoletto R. Vascular reactivity in diabetes mellitus: possible role of insulin on the endothelial cell. Br J Pharmacol. 1984;83:635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor PD, Oon BB, Thomas CR, Poston L. Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats. Br J Pharmacol. 1994;111:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Investig. 1990;85:929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Investig. 1991;87:1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tesfamariam B, Brown ML, Cohen RA. Aldose reductase and myo-inositol in endothelial cell dysfunction caused by elevated glucose. J Pharmacol Exp Ther. 1992;263:153.

    CAS  PubMed  Google Scholar 

  52. Cohen RA. Dysfunction of vascular endothelium in diabetes mellitus; 1993.

    Google Scholar 

  53. Kamata K, Miyata N, Abiru T, Kasuya Y. Functional changes in vascular smooth muscle and endothelium of arteries during diabetes mellitus. Life Sci. 1992;50:1379.

    Article  CAS  PubMed  Google Scholar 

  54. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J. 1987;245(1):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol Heart Circ Physiol. 1992;263:H321.

    Article  CAS  Google Scholar 

  56. Hattori Y, Kawasaki H, Abe K, Kanno M. Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol Heart Circ Physiol. 1991;261:H1086.

    Article  CAS  Google Scholar 

  57. Misurski DA, Gopalakrishnan V. Role of calcium-activated potassium channels in impaired acetylcholine vasodilatory responses in diabetic rats. J Cardiovasc Pharmacol. 2002;39(5):685–94.

    Article  CAS  PubMed  Google Scholar 

  58. Mayhan WG, Mayhan JF, Sun H, Patel KP. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus. Microcirculation. 2004;11(7):605–13.

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann PA, Knot HJ, Stevenson AS, Nelson MT. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circ Res. 1997;81(6):996–1004.

    Article  CAS  PubMed  Google Scholar 

  60. Mayhan WG. Effect of diabetes mellitus on response of the basilar artery to activation of ATP-sensitive potassium channels. Brain Res. 1994;636(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  61. de Tejada IS, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med. 1989;320:1025.

    Article  Google Scholar 

  62. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin- dependent diabetes mellitus. Circulation. 1993;88:2510.

    Article  CAS  PubMed  Google Scholar 

  63. Smits P, Kapma JA, Jacobs MC, Lutterman J, Thien T. Endothelium-dependent vascular relaxation in patients with type I diabetes. Diabetes. 1993;42:148.

    Article  CAS  PubMed  Google Scholar 

  64. Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Investig. 1992;90:2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Halkin A, Benjamin N, Doktor HS, Todd SD, Viberti G, Ritter JM. Vascular responsiveness and cation exchange in insulin-dependent diabetes. Clin Sci. 1991;81:223.

    Article  CAS  Google Scholar 

  66. Zenere BM, Arcaro G, Saggiani F, Rossi L, Muggeo M, Lechi A. Noninvasive detection of functional alterations of the arterial wall in IDDM patients with and without microalbuminuria. Diabetes Care. 1995;18:975.

    Article  CAS  PubMed  Google Scholar 

  67. Clarkson P, Celermajer DS, Donald AE, Sampson M, Sorensen KE, Adams M, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol. 1996;28:573.

    Article  CAS  PubMed  Google Scholar 

  68. Mäkimattila S, Virkamäki A, Groop PH, Cockcroft J, Utriainen T, Fagerudd J, et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms insulin-dependent diabetes mellitus. Circulation. 1996;94:1276.

    Article  PubMed  Google Scholar 

  69. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97:1695.

    Article  CAS  PubMed  Google Scholar 

  70. Chowienczyk PJ, Cockcroft JR, Brett SE, Ritter JM, Watts GF. Sex differences in endothelial function in normal and hypercholesterolaemic subjects. Lancet. 1994;344:305.

    Article  CAS  PubMed  Google Scholar 

  71. Makimattila S, Liu ML, Vakkilainen J, Schlenzka A, Lahdenpera S, Syvanne M, et al. Impaired endothelium-dependent vasodilation in type 2 diabetes: relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care. 1999;22(6):973–81.

    Article  CAS  PubMed  Google Scholar 

  72. Hogikyan RV, Galecki AT, Pitt B, Halter JB, Greene DA, Supiano MA. Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes independent of obesity 1. J Clin Endocrinol Metab. 1998;83(6):1946–52.

    CAS  PubMed  Google Scholar 

  73. Henry RMA, Ferreira I, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, et al. Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not: the Hoorn study. Atherosclerosis. 2004;174(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  74. Cosson E. Impaired coronary endothelium-dependent vasodilation is associated with microalbuminuria in patients with type 2 diabetes and angiographically normal coronary arteries. Diabetes Care. 2006;29(1):107–12.

    Article  PubMed  Google Scholar 

  75. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567.

    Article  CAS  PubMed  Google Scholar 

  76. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Impaired endothelium-dependent and independent vasodilation in patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771.

    Article  CAS  PubMed  Google Scholar 

  77. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48(9):1856–62.

    Article  CAS  PubMed  Google Scholar 

  78. Cosentino F, Lüscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol. 1998;32(Suppl 3):853.

    Google Scholar 

  79. Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Investig. 2016;126(3):821–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 2019;20(15):3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci. 2014;1311(1):138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng C, Liu Z. Vascular function, insulin action, and exercise: an intricate interplay. Trends Endocrinol Metab. 2015;26(6):297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fisslthaler B, Benzing T, Busse R, Fleming I. Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP-1. Nitric Oxide Biol Chem. 2003;8(4):253–61.

    Article  CAS  Google Scholar 

  84. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Investig. 1999;104(4):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim JA, Montagnani M, Kwang KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113(15):1888–904.

    Article  PubMed  Google Scholar 

  86. Ferri C, Pittoni V, Piccoli A, Laurenti O, Cassone MR, Bellini C, et al. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab. 1995;80(3):829–35.

    CAS  PubMed  Google Scholar 

  87. Takahashi K, Ghatei MA, Lam HC, O’Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990;33(5):306–10.

    Article  CAS  PubMed  Google Scholar 

  88. Wu SQ, Hopfner RL, McNeill JR, Wilson TW, Gopalakrishnan V. Altered paracrine effect of endothelin in blood vessels of the hyperinsulinemic, insulin resistant obese Zucker rat. Cardiovasc Res. 2000;45(4):994–1000.

    Article  CAS  PubMed  Google Scholar 

  89. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol. 2005;289(2):H813.

    Article  CAS  PubMed  Google Scholar 

  90. Yang P, Cao Y, Li H. Hyperglycemia induces inducible nitric oxide synthase gene expression and consequent nitrosative stress via c-Jun N-terminal kinase activation. Am J Obstet Gynecol. 2010;203(2):185.e5–e11.

    Article  PubMed  Google Scholar 

  91. Cai S, Khoo J, Channon KM. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc Res. 2005;65(4):823–31.

    Article  CAS  PubMed  Google Scholar 

  92. Assmann TS, Brondani LA, Bouças AP, Rheinheimer J, de Souza BM, Canani LH, et al. Nitric oxide levels in patients with diabetes mellitus: a systematic review and meta-analysis. Nitric Oxide Biol Chem. 2016;61:1–9.

    Article  CAS  Google Scholar 

  93. Adela R, Nethi SK, Bagul PK, Barui AK, Mattapally S, Kuncha M, et al. Hyperglycaemia enhances nitric oxide production in diabetes: a study from South Indian patients. PLoS One. 2015;10(4):e0125270.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shahid SM, Mahboob T. Diabetes and hypertension: correlation between glycosylated hemoglobin (HbA1c) and serum nitric oxide (NO). Aust J Basic Appl Sci. 2009;3(2):1323–7.

    CAS  Google Scholar 

  95. Hoeldtke RD, Bryner KD, McNeill DR, Warehime SS, Van Dyke K, Hobbs G. Oxidative stress and insulin requirements in patients with recent-onset type I diabetes. J Clin Endocrinol Metab. 2003;88(4):1624–8.

    Article  CAS  PubMed  Google Scholar 

  96. Blum A, Meerson A, Rohana H, Jabaly H, Nahul N, Celesh D, et al. MicroRNA-423 may regulate diabetic vasculopathy. Clin Exp Med. 2019;19(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  97. Miyata S, Noda A, Hara Y, Ueyama J, Kitaichi K, Kondo T, et al. Nitric oxide plasma level as a barometer of endothelial dysfunction in factory workers. Exp Clin Endocrinol Diabetes. 2017;125(10):684–9.

    Article  CAS  PubMed  Google Scholar 

  98. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Martini F, Scaglione GL, et al. Role of asymmetric-dimethyl-l-arginine (ADMA) and nitrite/nitrate (NOx) in the pathogenesis of oxidative stress in female subjects with uncomplicated type 1 diabetes mellitus. Diabetes Res Clin Pract. 2009;86(3):173–6.

    Article  CAS  PubMed  Google Scholar 

  99. Liu B, Kuang L, Liu J. Bariatric surgery relieves type 2 diabetes and modulates inflammatory factors and coronary endothelium eNOS/iNOS expression in db/db mice. Can J Physiol Pharmacol. 2014;92(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  100. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dohi T, Kawamura K, Morita K, Okamoto H, Tsujimoto A. Alterations of the plasma selenium concentrations and the activities of tissue peroxide metabolism enzymes in streptozotocin-induced diabetic rats. Horm Metab Res. 1988;20:671.

    Article  CAS  PubMed  Google Scholar 

  102. Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes. 1987;36:1014.

    Article  CAS  PubMed  Google Scholar 

  103. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

    Article  CAS  PubMed  Google Scholar 

  104. Li Q, Atochin D, Kashiwagi S, Earle J, Wang A, Mandeville E, et al. Deficient eNOS Phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size. Stroke. 2013;44(11):3183–8.

    Article  CAS  PubMed  Google Scholar 

  105. Tang WHW, Shrestha K, Wang Z, Troughton RW, Klein AL, Hazen SL. Diminished global arginine bioavailability as a metabolic defect in chronic systolic heart failure. J Card Fail. 2013;19(2):87–93.

    Article  PubMed  Google Scholar 

  106. Sourij H, Meinitzer A, Pilz S, Grammer TB, Winkelmann BR, Boehm BO, et al. Arginine bioavailability ratios are associated with cardiovascular mortality in patients referred to coronary angiography. Atherosclerosis. 2011;218(1):220–5.

    Article  CAS  PubMed  Google Scholar 

  107. Tang WHW, Wang Z, Cho L, Brennan DM, Hazen SL. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J Am Coll Cardiol. 2009;53(22):2061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bivalacqua TJ, Hellstrom WJG, Kadowitz PJ, Champion HC. Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem Biophys Res Commun. 2001;283(4):923–7.

    Article  CAS  PubMed  Google Scholar 

  109. El-Bassossy HM, El-Fawal R, Fahmy A. Arginase inhibition alleviates hypertension associated with diabetes: effect on endothelial dependent relaxation and NO production. Vasc Pharmacol. 2012;57(5–6):194–200.

    Article  CAS  Google Scholar 

  110. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298:249.

    Article  CAS  PubMed Central  Google Scholar 

  111. Asahina T, Kashiwagi A, Nishio Y, Ikebuchi M, Harada N, Tanaka Y, et al. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium. Diabetes. 1995;44:520.

    Article  CAS  Google Scholar 

  112. Yan L-J. Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Anim Mod Exp Med. 2018;1(1):7–13.

    Article  Google Scholar 

  113. Ido Y, Kilo C, Williamson JR. Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia. 1997;40:S115.

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt K, Werner ER, Mayer B, Wachter H, Kukovetz WR. Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells. Biochem J. 1992;281:297.

    Article  CAS  PubMed Central  Google Scholar 

  115. Cosentino F, Katušić ZS. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation. 1995;91:139.

    Article  CAS  PubMed  Google Scholar 

  116. Wu J, Jin Z, Yan LJ. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol. 2017;11:51–9.

    Article  PubMed  Google Scholar 

  117. Wu J, Luo X, Thangthaeng N, Sumien N, Chen Z, Rutledge MA, et al. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep. 2017;11:119–29.

    PubMed  PubMed Central  Google Scholar 

  118. Zweier JL, Chen CA, Druhan LJ. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal. 2011;14(10):1769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MAH, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sánchez-Gómez FJ, Espinosa-Díez C, Dubey M, Dikshit M, Lamas S. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol Chem. 2013;394(10):1263–80.

    Article  PubMed  Google Scholar 

  121. Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6(2):82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bartnicki P, Kowalczyk M, Franczyk-Skóra B, Baj Z, Rysz J. Evaluation of endothelial (dys)function, left ventricular structure and function in patients with chronic kidney disease. Curr Vasc Pharmacol. 2016;14(4):360–7.

    Article  CAS  PubMed  Google Scholar 

  123. Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases - the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20(22):3579–94.

    Article  CAS  PubMed  Google Scholar 

  124. Altinova AE, Arslan M, Sepici-Dincel A, Akturk M, Altan N, Toruner FB. Uncomplicated type 1 diabetes is associated with increased asymmetric dimethylarginine concentrations. J Clin Endocrinol Metab. 2007;92(5):1881–5.

    Article  CAS  Google Scholar 

  125. Abd El Dayem SM, Battah AA, El Bohy AEM, Yousef RN, Ahmed AM, Talaat AA. Apelin, nitric oxide and vascular affection in adolescent type 1 diabetic patients. Open Access Macedonian. J Med Sci. 2017;5(7):934–9.

    Google Scholar 

  126. Konukoglu D, Firtina S, Serin O. The relationship between plasma asymmetrical dimethyl-l-arginine and inflammation and adhesion molecule levels in subjects with normal, impaired, and diabetic glucose tolerance. Metab Clin Exp. 2008;57(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  127. Tarnow L, Hovind P, Teerlink T, Stehouwer CDA, Parving HH. Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care. 2004;27(3):765–9.

    Article  CAS  PubMed  Google Scholar 

  128. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987–92.

    Article  CAS  PubMed  Google Scholar 

  129. Abbasi F, Asagmi T, Cooke JP, Lamendola C, McLaughlin T, Reaven GM, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol. 2001;88(10):1201–3.

    Article  CAS  PubMed  Google Scholar 

  130. Krzyzanowska K, Mittermayer F, Krugluger W, Schnack C, Hofer M, Wolzt M, et al. Asymmetric dimethylarginine is associated with macrovascular disease and total homocysteine in patients with type 2 diabetes. Atherosclerosis. 2006;189(1):236–40.

    Article  CAS  PubMed  Google Scholar 

  131. Boger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119(12):1592–600.

    Article  PubMed Central  Google Scholar 

  132. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293(5539):2449–52.

    Article  CAS  PubMed  Google Scholar 

  133. Palacios-Ortega S, Varela-Guruceaga M, Martínez JA, de Miguel C, Milagro FI. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes. Adipocytes. 2016;5(1):65–80.

    Article  CAS  Google Scholar 

  134. Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of caveolin-1 in diabetes and its complications. Oxidative Med Cell Longev. 2020;2020:9761539.

    Article  Google Scholar 

  135. Xu B, Chibber R, Ruggiero D, Kohner E, Ritter J, Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J. 2003;17:1289.

    Article  CAS  Google Scholar 

  136. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Investig. 1991;87:432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vaziri ND, Liang K, Ding Y. Increased nitric oxide inactivation by reactive oxygen species in lead- induced hypertension. Kidney Int. 1999;56:1492.

    Article  CAS  PubMed  Google Scholar 

  138. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart. 2003;34:2436.

    Google Scholar 

  139. Kelley DE, Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non-insulin- dependent diabetes mellitus. J Clin Investig. 1994;94:2349.

    Article  CAS  PubMed Central  Google Scholar 

  140. Boden G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Assoc Am Physicians. 1999;111:241.

    Article  CAS  PubMed  Google Scholar 

  141. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Investig. 1997;100:1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Investig. 1999;103:253.

    Article  CAS  PubMed Central  Google Scholar 

  143. Dichtl W, Nilsson L, Goncalves I, Ares MPS, Banfi C, Calara F, et al. Very low-density lipoprotein activates nuclear factor-κB in endothelial cells. Circ Res. 1999;84:1085.

    Article  CAS  PubMed  Google Scholar 

  144. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939.

    Article  CAS  PubMed  Google Scholar 

  145. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Investig. 2006;116(4):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Man FH, Weverling-Rijnsburger AWE, Van Der Laarse A, Smelt AHM, Jukema JW, Blauw GJ. Not acute but chronic hypertriglyceridemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler Thromb Vasc Biol. 2000;20:744.

    Article  PubMed  Google Scholar 

  148. Kuhn FE, Mohler ER, Satler LF, Reagan K, Lu DY, Rackley CE. Effects of high-density lipoprotein on acetylcholine-induced coronary vasoreactivity. Am J Cardiol. 1991;68:1425.

    Article  CAS  PubMed  Google Scholar 

  149. Osborne JA, Siegman MJ, Sedar AW, Mooers SU, Lefer AM. Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits. Am J Physiol Cell Physiol. 1989;256:C591.

    Article  CAS  Google Scholar 

  150. Simon BC, Cunningham LD, Cohen RA. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Investig. 1990;86:75.

    Article  CAS  PubMed Central  Google Scholar 

  151. Shimokawa H, Vanhoutte PM. Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteries. J Am Coll Cardiol. 1989;13:1402.

    Article  CAS  Google Scholar 

  152. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Investig. 1992;90:1248.

    Article  CAS  PubMed Central  Google Scholar 

  153. Chowienczyk PJ, Watts GF, Cockcroft JR, Ritter JM. Impaired endothelium-dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet. 1992;340:1430.

    Article  CAS  PubMed  Google Scholar 

  154. Quyyumi AA, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO. Coronary vascular nitric oxide activity in hypertension and hypercholesterolemia: comparison of acetylcholine and substance P. Circulation. 1997;95:104.

    Article  CAS  PubMed  Google Scholar 

  155. Shiode N, Nakayama K, Morishima N, Yamagata T, Matsuura H, Kajiyama G. Nitric oxide production by coronary conductance and resistance vessels in hypercholesterolemia patients. Am Heart J. 1996;131:1051.

    Article  CAS  PubMed  Google Scholar 

  156. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992;90(3):1168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Investig. 1993;91:2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.

    Article  PubMed  Google Scholar 

  159. Tan KCB, Ai VHG, Chow WS, Chau MT, Leong L, Lam KSL. Influence of low density lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium-dependent and independent vasodilation in patients with type 2 diabetes 1. J Clin Endocrinol Metab. 1999;84:3212.

    CAS  PubMed  Google Scholar 

  160. O’Brien SF, Watts GF, Playford DA, Burke V, O’Neal DN, Best JD. Low-density lipoprotein size, high density lipoprotein concentration, and endothelial dysfunction in non-insulin dependent diabetes. Diabet Med. 1997;14:974.

    Article  PubMed  Google Scholar 

  161. Skyrme-Jones RAP, O’Brien RC, Luo M, Meredith IT. Endothelial vasodilator function is related to low-density lipoprotein particle size and low-density lipoprotein vitamin E content in type 1 diabetes. J Am Coll Cardiol. 2000;35:292.

    Article  CAS  PubMed  Google Scholar 

  162. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, et al. Glycation impairs high-density lipoprotein function. Diabetologia. 2000;43:312.

    Article  CAS  PubMed  Google Scholar 

  163. Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension. 1983;5:881.

    Article  CAS  PubMed  Google Scholar 

  164. Tuncer M, Vanhoutte PM. Response to the endothelium-dependent vasodilator acetylcholine in perfused kidneys of normotensive and spontaneously hypertensive rats. Blood Press. 1993;2(3):217–20.

    Article  CAS  PubMed  Google Scholar 

  165. Bell DR. Vascular smooth muscle responses to endothelial autacoids in rats with chronic coarctation hypertension. J Hypertens. 1993;11(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  166. Vanhoutte PM, Boulanger CM. Endothelium-dependent responses in hypertension. Hypertens Res. 1995;18:87.

    Article  CAS  PubMed  Google Scholar 

  167. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium- dependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468.

    Article  CAS  PubMed  Google Scholar 

  168. Panza JA, Casino PR, Badar DM, Quyyumi AA. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation. 1993;87:1475.

    Article  CAS  PubMed  Google Scholar 

  169. Panza JA. Endothelial dysfunction in essential hypertension. Clin Cardiol. 1997;20:II-26.

    Article  Google Scholar 

  170. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Impaired endothelium-dependent vasodilation in patients with essential hypertension: evidence that the abnormality is not at the muscarinic receptor level. J Am Coll Cardiol. 1994;23:1610.

    Article  CAS  PubMed  Google Scholar 

  171. Panza JA, García CE, Kilcoyne CM, Quyyumi AA, Cannon RO. Impaired endothelium-dependent vasodilation in patients with essential hypertension. Circulation. 1995;91:1732.

    Article  CAS  PubMed  Google Scholar 

  172. Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res. 1985;57:781.

    Article  CAS  PubMed  Google Scholar 

  173. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A. 1991;88(22):10045–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Garcia CE, Kilcoyne CM, Cardillo C, Cannon RO III, Quyyumi AA, Panza JA. Effect of copper-zinc superoxide dismutase on endothelium-dependent vasodilation in patients with essential hypertension. Hypertension. 1995;26(6 Pt 1):863–8.

    Article  CAS  PubMed  Google Scholar 

  175. Cardillo C, Kilcoyne CM, Cannon RO, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension. 1997;30:57.

    Article  CAS  PubMed  Google Scholar 

  176. Lucas CP, Estigarribia JA, Darga LL, Reaven GM. Insulin and blood pressure in obesity. Hypertension. 1985;7(5):702–6.

    Article  CAS  PubMed  Google Scholar 

  177. Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, et al. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Investig. 1985;75:809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, et al. Activation of vascular protein kinase C-beta; inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55(3):691–8.

    Article  CAS  PubMed  Google Scholar 

  179. Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, et al. Protein kinase C-β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation. 2013;127(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  180. Chen CC, Wang JK, Lin SB. Antisense oligonucleotides targeting protein kinase C-alpha, -beta I, or -delta but not -eta inhibit lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: involvement of a nuclear factor kappa B-dependent mechanism. J Immunol. 1998;161(11):6206–14.

    Article  CAS  PubMed  Google Scholar 

  181. Salonen T, Sareila O, Jalonen U, Kankaanranta H, Tuominen R, Moilanen E. Inhibition of classical PKC isoenzymes downregulates STAT1 activation and iNOS expression in LPS-treated murine J774 macrophages. Br J Pharmacol. 2006;147(7):790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science. 1996;272:728.

    Article  CAS  PubMed  Google Scholar 

  183. Shen GX. Selective protein kinase C inhibitors and their applications. Curr Drug Target. 2003;3(4):301–7.

    CAS  Google Scholar 

  184. Menini S, Iacobini C, Ricci C, Fantauzzi CB, Pugliese G. Protection from diabetes-induced atherosclerosis and renal disease by d-carnosine-octylester: effects of early vs late inhibition of advanced glycation end-products in Apoe-null mice. Diabetologia. 2015;58(4):845–53.

    Article  CAS  PubMed  Google Scholar 

  185. Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992;89:12043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, et al. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia. 2006;49(12):3094–9.

    Article  CAS  PubMed  Google Scholar 

  187. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi SI. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem Biophys Res Commun. 2010;391(3):1405–8.

    Article  CAS  PubMed  Google Scholar 

  188. Byun K, Yoo YC, Son M, Lee J, Jeong GB, Park YM, et al. Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther. 2017;177:44–55.

    Article  CAS  PubMed  Google Scholar 

  189. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci. 1996;90:255.

    Article  CAS  Google Scholar 

  190. Cunningham JJ, Ellis SL, McVeigh KL, Levine RE, Calles-Escandon J. Reduced mononuclear leukocyte ascorbic acid content in adults with insulin-dependent diabetes mellitus consuming adequate dietary vitamin C. Metabolism. 1991;40:146.

    Article  CAS  PubMed  Google Scholar 

  191. Karpen CW, Cataland S, O’Dorisio TM, Panganamala RV. Interrelation of platelet vitamin E and thromboxane synthesis in type I diabetes mellitus. Diabetes. 1984;33:239.

    Article  CAS  PubMed  Google Scholar 

  192. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1998;31:552.

    Article  CAS  PubMed  Google Scholar 

  193. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Investig. 1996;97:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Beckman JA, Goldfine AB, Gordon MB, Creager MA. Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation. 2001;103:1618.

    Article  CAS  PubMed  Google Scholar 

  195. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF, Creager MA. Oral antioxidant therapy improves endothelial function in type 1 but not type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285(6):H2392.

    Article  CAS  PubMed  Google Scholar 

  196. Mason SA, Rasmussen B, van Loon LJC, Salmon J, Wadley GD. Ascorbic acid supplementation improves postprandial glycaemic control and blood pressure in individuals with type 2 diabetes: findings of a randomized cross-over trial. Diabetes Obes Metab. 2019;21(3):674–82.

    Article  CAS  PubMed  Google Scholar 

  197. El-Aal AA, El-Ghffar EAA, Ghali AA, Zughbur MR, Sirdah MM. The effect of vitamin C and/or E supplementations on type 2 diabetic adult males under metformin treatment: a single-blinded randomized controlled clinical trial. Diabetes Metab Syndr Clin Res Rev. 2018;12(4):483–9.

    Article  Google Scholar 

  198. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Investig. 1997;99:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia. 2000;43(11):1435–8.

    Article  CAS  PubMed  Google Scholar 

  200. Ihlemann N, Rask-Madsen C, Perner A, Dominguez H, Hermann T, Køber L, et al. Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol. 2003;285(2):H875.

    Article  CAS  PubMed  Google Scholar 

  201. Wang Q, Yang M, Xu H, Yu J. Tetrahydrobiopterin improves endothelial function in cardiovascular disease: a systematic review. Evid Based Complement Alternat Med. 2014;2014:850312.

    Article  PubMed  PubMed Central  Google Scholar 

  202. d’Uscio LV, Milstien S, Richardson D, Smith L, Katusic ZS. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res. 2003;92(1):88–95.

    Article  PubMed  Google Scholar 

  203. Mortensen A, Hasselholt S, Tveden-Nyborg P, Lykkesfeldt J. Guinea pig ascorbate status predicts tetrahydrobiopterin plasma concentration and oxidation ratio in vivo. Nutr Res. 2013;33(10):859–67.

    Article  CAS  PubMed  Google Scholar 

  204. West MB, Ramana KV, Kaiserova K, Srivastava SK, Bhatnagar A. l-Arginine prevents metabolic effects of high glucose in diabetic mice. FEBS Lett. 2008;582(17):2609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. El-Missiry MA, Othman AI, Amer MA. L-Arginine ameliorates oxidative stress in alloxan-induced experimental diabetes mellitus. J Appl Toxicol. 2004;24(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  206. Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317(2–3):317–20.

    Article  CAS  PubMed  Google Scholar 

  207. Özcelikay AT, Tay A, Güner S, Tasyaran V, Yildizoglu-Ari N, Dincer ÜD, et al. Reversal effects of L-arginine treatment on blood pressure and vascular responsiveness of streptozotocin-diabetic rats. Pharmacol Res. 2000;41(2):201–9.

    Article  PubMed  Google Scholar 

  208. Lekakis JP, Papathanassiou S, Papaioannou TG, Papamichael CM, Zakopoulos N, Kotsis V, et al. Oral L-arginine improves endothelial dysfunction in patients with essential hypertension. Int J Cardiol. 2002;86(2–3):317–23.

    Article  PubMed  Google Scholar 

  209. Adams MR, McCredie R, Jessup W, Robinson J, Sullivan D, Celermajer DS. Oral L-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis. 1997;129(2):261–9.

    Article  CAS  PubMed  Google Scholar 

  210. Oka RK, Szuba A, Giacomini JC, Cooke JP. A pilot study of L-arginine supplementation on functional capacity in peripheral arterial disease. Vasc Med. 2005;10(4):265–74.

    Article  PubMed  Google Scholar 

  211. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.

    Article  CAS  PubMed  Google Scholar 

  212. Lubec B, Hayn M, Kitzmüller E, Vierhapper H, Lubec G. L-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med. 1997;22(1–2):355–7.

    Article  CAS  PubMed  Google Scholar 

  213. Huynh NT, Tayek JA. Oral arginine reduces systemic blood pressure in type 2 diabetes: its potential role in nitric oxide generation. J Am Coll Nutr. 2002;21(5):422–7.

    Article  CAS  PubMed  Google Scholar 

  214. Piatti P, Monti LD, Valsecchi G, Magni F, Setola E, Marchesi F, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–80.

    Article  CAS  PubMed  Google Scholar 

  215. Rodrigues-Krause J, Krause M, da Rocha IMG, Umpierre D, Fayh APT. Association of L-arginine supplementation with markers of endothelial function in patients with cardiovascular or metabolic disorders: a systematic review and meta-analysis. Nutrients. 2019;11(1):15.

    Article  CAS  Google Scholar 

  216. Sun T, Zhou WB, Luo XP, Tang YL, Shi HM. Oral L-arginine supplementation in acute myocardial infarction therapy: a meta-analysis of randomized controlled trials. Clin Cardiol. 2009;32(11):649–52.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Dong JY, Qin LQ, Zhang Z, Zhao Y, Wang J, Arigoni F, et al. Effect of oral l-arginine supplementation on blood pressure: a meta-analysis of randomized, double-blind, placebo-controlled trials. Am Heart J. 2011;162(6):959–65.

    Article  CAS  PubMed  Google Scholar 

  218. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Schenck-Gustafsson K, Brincat M, Erel CT, Gambacciani M, Lambrinoudaki I, Moen MH, et al. EMAS position statement: managing the menopause in the context of coronary heart disease. Maturitas. 2011;68(1):94–7.

    Article  PubMed  Google Scholar 

  220. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA. 1991;265:1861.

    Article  CAS  PubMed  Google Scholar 

  221. Barton M. Cholesterol and atherosclerosis: modulation by oestrogen. Curr Opin Lipidol. 2013;24(3):214–20.

    Article  CAS  PubMed  Google Scholar 

  222. Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes. 1992;41:26.

    Article  PubMed  Google Scholar 

  223. Mendelsohn ME. Estrogen actions in the cardiovascular system. Climacteric. 2009;12(Suppl 1):18–21.

    Article  CAS  PubMed  Google Scholar 

  224. Monsalve E, Oviedo PJ, García-Pérez MA, Tarín JJ, Cano A, Hermenegildo C. Estradiol counteracts oxidized LDL-induced asymmetric dimethylarginine production by cultured human endothelial cells. Cardiovasc Res. 2007;73(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  225. Keaney JF, Shwaery GT, Xu A, Nicolosi RJ, Loscalzo J, Foxall TL, et al. 17β-Estradiol preserves endothelial vasodilator function and limits low- density lipoprotein oxidation in hypercholesterolemic swine. Circulation. 1994;89(5):2251–9.

    Article  CAS  PubMed  Google Scholar 

  226. Gisclard V, Miller VM, Vanhoutte PM. Effect of 17 β-estradiol on endothelium-dependent responses in the rabbit. J Pharmacol Exp Ther. 1988;244:19.

    CAS  PubMed  Google Scholar 

  227. Lieberman EH, Gerhard MD, Uehata A, Walsh BW, Selwyn AP, Ganz P, et al. Estrogen improves endothelium-dependent, flow-mediated vasodilation in postmenopausal women. Ann Intern Med. 1994;121(12):936–41.

    Article  CAS  PubMed  Google Scholar 

  228. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO. Acute vascular effects of estrogen in postmenopausal women. Circulation. 1994;90:786.

    Article  CAS  PubMed  Google Scholar 

  229. Pinto S, Virdis A, Ghiadoni L, Bernini GP, Lombardo M, Petraglia F, et al. Endogenous estrogen and acetylcholine-induced vasodilation in normotensive women. Hypertension. 1997;29:268.

    Article  CAS  PubMed  Google Scholar 

  230. Stampfer MJ, Colditz GA, Willett WC, Manson JE, Rosner B, Speizer FE, et al. Postmenopausal estrogen therapy and cardiovascular disease: ten-year follow-up from the nurses’ health study. N Engl J Med. 1991;325(11):756–62.

    Article  CAS  Google Scholar 

  231. Lowe G. Hormone therapy and risk of myocardial infarction. Women Health. 2009;5(1):29–31.

    Article  CAS  Google Scholar 

  232. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349(6):523–34.

    Article  CAS  PubMed  Google Scholar 

  233. Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ. 2012;345:7881.

    Article  Google Scholar 

  234. Salpeter SR, Walsh JME, Greyber E, Salpeter EE. Brief report: coronary heart disease events associated with hormone therapy in younger and older women - a meta-analysis. J Gen Intern Med. 2006;21(4):363–6.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Salpeter SR, Walsh JME, Greyber E, Ormiston TM, Salpeter EE. Mortality associated with hormone replacement therapy in younger and older women: a meta-analysis. J Gen Intern Med. 2004;19(7):791–804.

    Article  PubMed  PubMed Central  Google Scholar 

  236. US FDA. Press release. Updates hormone therapy information for postmenopausal women. Silver Spring, MD: US FDA; 2011.

    Google Scholar 

  237. Wagner C, Kurtz A. Regulation of renal renin release. Curr Opin Nephrol Hypertens. 1998;7(4):437–41.

    Article  CAS  PubMed  Google Scholar 

  238. Ichikawi I, Harris RC. Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int. 1991;40(4):583–96.

    Article  CAS  PubMed  Google Scholar 

  239. Carretero OA, Scicli AG. The renal kallikrein-kinin system. Am J Phys. 1980;238(4):F247–55.

    CAS  Google Scholar 

  240. Parmley WW. Evolution of angiotensin-converting enzyme inhibition in hypertension, heart failure, and vascular protection. Am J Med. 1998;105(1A):27S–31S.

    Article  CAS  PubMed  Google Scholar 

  241. Mancini GB. Emerging role of angiotensin II type 1 receptor blockers for the treatment of endothelial dysfunction and vascular inflammation. Can J Cardiol. 2002;18(12):1309–16.

    CAS  PubMed  Google Scholar 

  242. Cheetham C, O’Driscoll G, Stanton K, Taylor R, Green D. Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes. Clin Sci (Lond). 2001;100(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  243. O’Driscoll G, Green D, Maiorana A, Stanton K, Colreavy F, Taylor R. Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1999;33(6):1506–11.

    Article  PubMed  Google Scholar 

  244. Giugliano D, Marfella R, Acampora R, Giunta R, Coppola L, D’Onofrio F. Effects of perindopril and carvedilol on endothelium-dependent vascular functions in patients with diabetes and hypertension. Diabetes Care. 1998;21(4):631–6.

    Article  CAS  Google Scholar 

  245. Li S, Wu Y, Yu G, Xia Q, Xu Y. Angiotensin II receptor blockers improve peripheral endothelial function: a meta-analysis of randomized controlled trials. PLoS One. 2014;9(3):e90217.

    Article  PubMed Central  Google Scholar 

  246. Shrikhande G, Khaodhiar L, Scali S, Lima C, Hubbard M, Dudley K, et al. Valsartan improves resting skin blood flow in type 2 diabetic patients and reduces poly(adenosine diphosphate-ribose) polymerase activation. J Vasc Surg. 2006;43(4):760–70; discussion 70–1.

    Article  Google Scholar 

  247. Komers R, Simkova R, Kazdova L, Ruzickova J, Pelikanova T. Effects of ACE inhibition and AT1-receptor blockade on haemodynamic responses to L-arginine in Type 1 diabetes. J Renin-Angiotensin-Aldosterone Syst. 2004;5(1):33–8.

    Article  CAS  Google Scholar 

  248. McFarlane R, McCredie RJ, Bonney MA, Molyneaux L, Zilkens R, Celermajer DS, et al. Angiotensin converting enzyme inhibition and arterial endothelial function in adults with Type 1 diabetes mellitus. Diabet Med. 1999;16(1):62–6.

    Article  CAS  Google Scholar 

  249. Heart Outcomes Prevention Evaluation Study I, Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):145–53.

    Article  Google Scholar 

  250. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003.

    Article  CAS  Google Scholar 

  251. Dushay JR, Tecilazich F, Kafanas A, Magargee ML, Auster ME, Gnardellis C, et al. Aliskiren improves vascular smooth muscle function in the skin microcirculation of type 2 diabetic patients with normal renal function. Journal of the Renin-Angiotensin-Aldosterone. System. 2015;16(2):344–52.

    CAS  Google Scholar 

  252. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  253. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation. 2000;101(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  254. Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol. 2003;58(11):719–31.

    Article  CAS  Google Scholar 

  255. Laufs U, Fata VL, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem. 1997;272(50):31725–9.

    Article  CAS  PubMed  Google Scholar 

  256. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273(37):24266–71.

    Article  CAS  PubMed  Google Scholar 

  257. Lefer AM, Scalia R, Lefer DJ. Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res. 2001;49(2):281–7.

    Article  CAS  Google Scholar 

  258. Lefer DJ. Statins as potent antiinflammatory drugs. Circulation. 2002;106(16):2041–2.

    Article  Google Scholar 

  259. Mansourati J, Newman LG, Roman SH, Travis A, Rafey M, Phillips RA. Lipid lowering does not improve endothelial function in subjects with poorly controlled diabetes. Diabetes Care. 2001;24(12):2152–3.

    Article  CAS  Google Scholar 

  260. Dogra GK, Watts GF, Chan DC, Stanton K. Statin therapy improves brachial artery vasodilator function in patients with Type 1 diabetes and microalbuminuria. Diabet Med. 2005;22(3):239–42.

    Article  CAS  PubMed  Google Scholar 

  261. Mullen MJ, Wright D, Donald AE, Thorne S, Thomson H, Deanfield JE. Atorvastatin but not L-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. J Am Coll Cardiol. 2000;36(2):410–6.

    Article  CAS  Google Scholar 

  262. Tsunekawa T, Hayashi T, Kano H, Sumi D, Matsui-Hirai H, Thakur NK, et al. Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days. Circulation. 2001;104(4):376–9.

    Article  CAS  Google Scholar 

  263. Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab. 2004;89(2):740–7.

    Article  CAS  Google Scholar 

  264. Tan KC, Chow WS, Tam SC, Ai VH, Lam CH, Lam KS. Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2002;87(2):563–8.

    Article  CAS  PubMed  Google Scholar 

  265. Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation. 2002;106(10):1211–8.

    Article  PubMed  Google Scholar 

  266. Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, et al. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105(5):576–82.

    Article  CAS  PubMed  Google Scholar 

  267. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Pasceri V, Wu HD, Willerson JT, Yeh ET. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation. 2000;101(3):235–8.

    Article  CAS  PubMed  Google Scholar 

  269. Cominacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Rigoni A, et al. The expression of adhesion molecules on endothelial cells is inhibited by troglitazone through its antioxidant activity. Cell Adhes Commun. 1999;7(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  270. Kato K, Satoh H, Endo Y, Yamada D, Midorikawa S, Sato W, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun. 1999;258(2):431–5.

    Article  CAS  PubMed  Google Scholar 

  271. Caballero AE, Saouaf R, Lim SC, Hamdy O, Abou-Elenin K, O’Connor C, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism. 2003;52(2):173–80.

    Article  CAS  Google Scholar 

  272. Vinik AI, Stansberry KB, Barlow PM. Rosiglitazone treatment increases nitric oxide production in human peripheral skin: a controlled clinical trial in patients with type 2 diabetes mellitus. J Diabetes Complicat. 2003;17(5):279–85.

    Article  Google Scholar 

  273. Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Horio T, Suzuki M, Takamisawa I, Suzuki K, Hiuge A, Yoshimasa Y, et al. Pioglitazone-induced insulin sensitization improves vascular endothelial function in nondiabetic patients with essential hypertension. Am J Hypertens. 2005;18(12 Pt 1):1626–30.

    Article  CAS  PubMed  Google Scholar 

  275. Schneider F, Vossler S, Franke S, Bar F, Konrad T. Impact of insulin sensitivity treatment with pioglitazone on endothelial function in non-diabetic patients with arterial hypertension. Int J Clin Pharmacol Ther. 2009;47(5):311–20.

    Article  CAS  PubMed  Google Scholar 

  276. Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114(11):1788–803.

    Article  CAS  PubMed  Google Scholar 

  277. Baltzis D, Dushay JR, Loader J, Wu J, Greenman RL, Roustit M, et al. Effect of linagliptin on vascular function: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2016;101(11):4205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Batzias K, Antonopoulos AS, Oikonomou E, Siasos G, Bletsa E, Stampouloglou PK, et al. Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: a systematic review and meta-analysis. J Diabetes Res. 2018;2018:1232583.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Gurkan E, Tarkun I, Sahin T, Cetinarslan B, Canturk Z. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabetes Res Clin Pract. 2014;106(3):567–75.

    Article  CAS  PubMed  Google Scholar 

  280. Nomoto H, Miyoshi H, Furumoto T, Oba K, Tsutsui H, Miyoshi A, et al. A Comparison of the effects of the GLP-1 Analogue liraglutide and insulin glargine on endothelial function and metabolic parameters: a randomized, controlled trial Sapporo Athero-Incretin Study 2 (SAIS2). PLoS One. 2015;10(8):e0135854.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  282. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  283. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  284. Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (Comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation. 2017;136(3):249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Shigiyama F, Kumashiro N, Miyagi M, Ikehara K, Kanda E, Uchino H, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Johnstone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolaeva, M., Johnstone, M. (2023). Nitric Oxide, Its Role in Diabetes Mellitus and Methods to Improve Endothelial Function. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics