Skip to main content

Effects of Insulin on the Vascular System

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 636 Accesses

Abstract

Insulin is a hormone that in addition to its array of metabolic actions also modulates its delivery to target organs via the cardiovascular system allowing efficient clearance of glucose and other nutrients with little or no hyperglycemia. Insulin’s effects on the cardiovascular system are multiple and appear well coordinated including increased endothelial nitric oxide production, stimulation of the sympathetic nervous system, and blunting of vasopressor action at the level of skeletal muscle vessels which, in turn, preferentially increases delivery of insulin and nutrients to this organ. Insulin resistance as observed with obesity and diabetes is associated with blunting or abrogating of insulin’s non-metabolic effects which enhances dysglycemia and contributes to cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang C-S, et al. Insulin infusion in conscious dogs. Effects on systemic and coronary hemodynamics, regional blood flows, and plasma catecholamines. J Clin Invest. 1982;69:1321–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akerstrom T, et al. Hyperinsulinemia does not cause de novo capillary recruitment in rat skeletal muscle. Microcirculation. 2020;27(2):e12593.

    Article  PubMed  Google Scholar 

  3. McClatchey PM, et al. Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. Am J Physiol Endocrinol Metab. 2019;317(6):E1022–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jonasson H, et al. Normative data and the influence of age and sex on microcirculatory function in a middle-aged cohort: results from the SCAPIS study. Am J Physiol Heart Circ Physiol. 2020;318(4):H908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghosh D, et al. Super-resolution ultrasound imaging of skeletal muscle microvascular dysfunction in an animal model of type 2 diabetes. J Ultrasound Med. 2019;38(10):2589–99.

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237:E14–23.

    Google Scholar 

  7. Ray CA, et al. Muscle sympathetic nerve responses to dynamic one leg exercise: effect of body posture. Am J Phys. 1993;264:H1–7.

    CAS  Google Scholar 

  8. Laakso M, et al. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese men. J Clin Invest. 1990;85:1844–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scherrer U, et al. Suppression of insulin-induced sympathetic activation and vasodilation by dexamethasone in humans. Circulation. 1993;88:388–94.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson EA, et al. Hyperinsulinemia produces both sympathetic neural activation and vasodilaton in normal humans. J Clin Invest. 1991;87:2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westerbacka J, et al. Marked resistance of the ability of insulin to decrease arterial stiffness characterizes human obesity. Diabetes. 1999;48(4):821–7.

    Article  CAS  PubMed  Google Scholar 

  12. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation. 1997;96(11):4104–13.

    Article  CAS  PubMed  Google Scholar 

  13. Utriainen T, et al. Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia. 1995;38:555–64.

    Article  CAS  PubMed  Google Scholar 

  14. Baron AD, et al. Effect of perfusion rate on the time course of insulin mediated skeletal muscle glucose uptake. Am J Phys. 1996;271:E1067–72.

    CAS  Google Scholar 

  15. Westerbacka J, et al. Diminished wave reflection in the aorta. A novel physiological action of insulin on large blood vessels. Hypertension. 1999;33(5):1118–22.

    Article  CAS  PubMed  Google Scholar 

  16. Vincent MA, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–23.

    Article  CAS  PubMed  Google Scholar 

  17. Steinberg HO, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. J Clin Invest. 1994;94:1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnstone MT, Veves A, editors. Diabetes and cardiovascular disease. Totowa, NJ: Humana Press; 2001.

    Google Scholar 

  19. Laight DW, et al. Pharmacological modulation of endothelial function by insulin in the rat aorta. J Pharm Pharmacol. 1998;50(10):1117–20.

    Article  CAS  PubMed  Google Scholar 

  20. Campia U, et al. Insulin impairs endothelium-dependent vasodilation independent of insulin sensitivity or lipid profile. Am J Physiol Heart Circ Physiol. 2004;286:H76–82.

    Article  CAS  PubMed  Google Scholar 

  21. Scherrer U, et al. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen YL, Messina EJ. Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Phys. 1996;270:H2120–4.

    CAS  Google Scholar 

  23. Zeng G, Quon MJ. Insulin stimulated production of nitric oxide is inhibited by Wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98:894–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng G, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101(13):1539–45.

    Article  CAS  PubMed  Google Scholar 

  25. Dimmeler S, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    Article  CAS  PubMed  Google Scholar 

  26. Fulton D, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399(6736):597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shankar RR, et al. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes. 2000;49(5):684–7.

    Article  CAS  PubMed  Google Scholar 

  28. Vincent D, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111(9):1373–80.

    Article  Google Scholar 

  29. Shim CY, et al. Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. Am J Physiol Endocrinol Metab. 2014;307(12):E1097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baron AD, Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am J Phys. 1993;265:E61–7.

    CAS  Google Scholar 

  31. Ter Maaten JC, et al. Relationship between insulin’s haemodynamic effects and insulin-mediated glucose uptake. Eur J Clin Investig. 1998;28(4):279–84.

    Article  Google Scholar 

  32. Gans ROB, et al. Exogenous insulin augments in healthy volunteers the cardiovascular reactivity to noradrenaline but not to angiotensin II. J Clin Invest. 1991;88:512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Limberg JK, et al. Sympathetically mediated increases in cardiac output, not restraint of peripheral vasodilation, contribute to blood pressure maintenance during hyperinsulinemia. Am J Physiol Heart Circ Physiol. 2020;319(1):H162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morgantini C, et al. Effect of mild hyperisulinemia on conduit vessel endothelial function: role of noradrenergic activation. J Hypertens. 2012;30(4):720–4.

    Article  CAS  PubMed  Google Scholar 

  35. Fugmann A, et al. Central and peripheral haemodynamic effects of hyperglycaemia, hyperinsulinaemia, hyperlipidaemia or a mixed meal. Clin Sci. 2003;105(6):715–21.

    Article  CAS  Google Scholar 

  36. Kozlov IA, et al. The use of ultra-high doses of insulin for the treatment of severe heart failure during cardiosurgical interventions. Anesteziol Reanimatol. 1992;3:22–5.

    Google Scholar 

  37. Rowe JW, et al. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981;30(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  38. Vollenweider P, et al. Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. J Clin Invest. 1994;93:2365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van De Borne P, et al. Hyperinsulinemia produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal subjects. Am J Phys. 1999;276(1 Pt 2):R178–83.

    Google Scholar 

  40. Sartori C, Trueb L, Scherrer U. Insulin’s direct vasodilator action in humans is masked by sympathetic vasoconstrictor tone. Diabetes. 1996;75(Suppl 2):85A.

    Google Scholar 

  41. Rea RF, Hamdan M. Baroretlex control of muscle sympathetic nerve activity in borderline hypertension (see comments). Circulation. 1990;82(3):856–62.

    Article  CAS  PubMed  Google Scholar 

  42. Munzel MS, et al. Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens. 1995;17:39–50.

    Article  Google Scholar 

  43. Bellavere F, et al. Acute effect of insulin on autonomic regulation of the cardiovascular system: a study by heart rate spectral analysis. Diabet Med. 1996;13:709–14.

    Article  CAS  PubMed  Google Scholar 

  44. Schmetterer L, et al. Renal and ocular hemodynamic effects of insulin. Diabetes. 1997;46(11):1862–74.

    Article  Google Scholar 

  45. Muscelli E, et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens. 1996;9(8):746–52.

    Article  CAS  PubMed  Google Scholar 

  46. Gans ROB, et al. Renal and cardiovascular effects of exogenous insulin in healthy volunteers. Clin Sci. 1991;80:219–25.

    Article  CAS  Google Scholar 

  47. DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest. 1976;58(1):83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trevisan R, et al. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes. 1990;39(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  49. Lembo G, et al. Insulin modulation of an endothelial nitric oxide component present in the alpha-2 and beta-adrenergic responses in human forearm. J Clin Invest. 1997;100:2007–14. 61.

    Google Scholar 

  50. Baron AD, et al. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Phys. 1994;266:E248–53.

    CAS  Google Scholar 

  51. Baron AD, et al. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995;96:786–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baron AD, et al. Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment. Diabetes. 2000;49(5):768–74.

    Article  CAS  PubMed  Google Scholar 

  53. Bonadonna R, et al. Role of tissue specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation. 1998;98:234–41.

    Article  CAS  PubMed  Google Scholar 

  54. Rattigan S, Clark MG, Barrett EJ. Hemodynamic actions of insulin in rat skeletal muscle. Evidence for capillary recruitment. Diabetes. 1997;46:1381–8.

    Article  CAS  PubMed  Google Scholar 

  55. Coggins M, et al. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes. 2001;50(12):2682–90.

    Article  CAS  PubMed  Google Scholar 

  56. Vincent MA, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006;290(6):E1191–7.

    Article  CAS  PubMed  Google Scholar 

  57. Baron AD, et al. Interactions between insulin and norepinephrine on blood pressure and insulin sensitivity. J Clin Invest. 1994;93:2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakai K, et al. Intra-arterial infusion of insulin attenuates vasoreactivity in human forearm. Hypertension. 1993;22:67–73.

    Article  CAS  PubMed  Google Scholar 

  59. Buchanan TA, et al. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. J Clin Invest. 1993;92:720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vierhapper H. Effect of exogenous insulin on blood pressure regulation in healthy and diabetic subjects. Hypertension. 1985;7(6 Pt 2):1149–53.

    Google Scholar 

  61. Touyz RM, Tolloczko B, Schiffrin EL. Insulin attenuates agonist-evoked calcium transients in vascular smooth muscle. Hypertension. 1994;23(Suppl 1):1-25–8.

    Google Scholar 

  62. Folli F, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest. 1997;100(9):2158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morris AD, et al. Pressor and subpressor doses of angiotensin II increase insulin sensitivity in NIDDM. Dissociation of metabolic and blood pressure effects. Diabetes. 1994;43(12):1445–9. 67.

    Article  CAS  PubMed  Google Scholar 

  64. Townsend RR, DiPette DJ. Pressor doses of angiotensin II increase insulin mediated glucose uptake in normotensive men. Am J Phys. 1993;265:E362–6.

    CAS  Google Scholar 

  65. Vecchione C, et al. Cooperation between insulin and leptin in the modulation of vascular tone. Hypertension. 2003;42(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  66. Chen H, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278(45):45021–6.

    Article  CAS  PubMed  Google Scholar 

  67. Verma S, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;100(8):913–9.

    Article  Google Scholar 

  68. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia. 2003;46(12):1594–603.

    Article  CAS  PubMed  Google Scholar 

  69. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  CAS  PubMed  Google Scholar 

  70. Reaven GM. Syndrome X: 6 years later. J Intern Med. 1994;236(Suppl 736):13–22.

    Google Scholar 

  71. Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 1987;3:463–524.

    Article  CAS  PubMed  Google Scholar 

  72. Laakso M, et al. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992;41:1076–83.

    Article  CAS  PubMed  Google Scholar 

  73. Vollenweider L, et al. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Diabetes. 1995;44:641–5.

    Article  CAS  PubMed  Google Scholar 

  74. Van der Meer RW, et al. Magnetic resonance assessment of aortic pulse wave velocity, aortic distensibility, and cardiac function in uncomplicated type 2 diabetes mellitus. J Cardiovasc Magn Reson. 2007;9(4):645–51.

    Article  PubMed  Google Scholar 

  75. Steinberg HO, et al. Insulin mediated nitric oxide production is impaired in insulin resistance. Diabetes. 1997;46(Suppl 1):24A.

    Google Scholar 

  76. Laine H, et al. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Invest. 1998;101:1156–62. 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baron AD, et al. Skeletal muscle blood flow-a possible link between insulin resistance and blood pressure. Hypertension. 1993;21:129–35.

    Article  CAS  PubMed  Google Scholar 

  78. Forte P, et al. Basal nitric oxide synthesis in essential hypertension. Lancet. 1997;349(9055):837–42.

    Article  CAS  PubMed  Google Scholar 

  79. Avogaro A, et al. Forearm nitric oxide balance, vascular relaxation, and glucose metabolism in NIDDM patients. Diabetes. 1997;46:1040–6.

    Article  CAS  PubMed  Google Scholar 

  80. Avogaro A, et al. L-arginine-nitric oxide kinetics in normal and type 2 diabetic subjects: a stable-labelled 15N arginine approach. Diabetes. 2003;52(3):795–802.

    Article  CAS  PubMed  Google Scholar 

  81. Steinberg HO, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Kreutzenberg SV, et al. Plasma free fatty acids and endothelium dependent vasodilation: effect of chain-length and cyclooxygenase inhibition. J Clin Endocrinol Metab. 2000;85:793–8.

    Article  PubMed  Google Scholar 

  83. Chowienczyk PJ, et al. Preserved endothelial function in patients with severe hypertriglyceridemia and low functional lipoprotein lipase activity. J Am Coll Cardiol. 1997;29(5):964–8.

    Article  CAS  PubMed  Google Scholar 

  84. Steinberg HO, et al. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49(7):1231–8.

    Article  CAS  PubMed  Google Scholar 

  85. Dresner A, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davda RK, et al. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension. 1995;26:764–70.

    Article  CAS  PubMed  Google Scholar 

  87. Niu XL, et al. Some similarities in vascular effects of oleic acid and oxidized low-density lipoproteins on rabbit aorta. J Mol Cell Cardiol. 1995;27(1):531–9.

    Article  CAS  PubMed  Google Scholar 

  88. Shemyakin A, et al. Regulation of glucose uptake by endothelin-1 in human skeletal muscle in vivo and in vitro. J Clin Endocrinol Metab. 2010;95(5):2359–66.

    Article  CAS  PubMed  Google Scholar 

  89. Lundman P, et al. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol. 2001;38(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  90. Fard A, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2000;20(9):2039–44.

    Article  CAS  PubMed  Google Scholar 

  91. Cardillo C, et al. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension. 2004;43(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  92. Mather KJ, et al. ET-1A blockade improves endothelium-dependent vasodilation in insulin resistant obese and type 2 diabetic patients. Diabetes. 2000;9(Suppl 1):585P.

    Google Scholar 

  93. Reynolds LJ, et al. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985). 2017;122(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  94. Miller AW, et al. Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance. Hypertension. 2002;40(1):78–82.

    Article  CAS  PubMed  Google Scholar 

  95. Chai W, et al. Inhibiting myeloperoxidase prevents onset and reverses established high-fat diet-induced microvascular insulin resistance. Am J Physiol Endocrinol Metab. 2019;317(6):E1063–9.

    Article  CAS  PubMed  Google Scholar 

  96. Scaglione R, et al. Central obesity and hypertension: pathophysiologic role of renal haemodynamics and function. Int J Obes Relat Metab Disord. 1995;19(6):403–9.

    CAS  PubMed  Google Scholar 

  97. Muscelli E, et al. Autonomic and hemodynamic responses to insulin in lean and obese humans. J Clin Endocrinol Metab. 1998;83(6):2080–90.

    Google Scholar 

  98. Gans RO, Bilo HJ, Donker AJ. The renal response to exogenous insulin in non-insulin-dependent diabetes mellitus in relation to blood pressure and cardiovascular hormonal status. Nephrol Dial Transplant. 1996;11(5):794–802.

    Article  CAS  PubMed  Google Scholar 

  99. Belke DD, et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest. 2002;109(5):629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Savji N, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tack CJ, et al. Direct vasodilator effects of physiological hyperinsulinaemia in human skeletal muscle. Eur J Clin Investig. 1996;26:772–8.

    Article  CAS  Google Scholar 

  102. Grassi G, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25(560):563.

    Google Scholar 

  103. Scherrer U, et al. Body fat and sympathetic nerve activity in healthy subjects. Circulation. 1994;89(2634):2640.

    Google Scholar 

  104. Dell’Oro R, et al. Sympathetic and baroreflex abnormalities in the uncomplicated prediabetic state. J Hypertens. 2018;36(5):1195–200.

    Article  PubMed  Google Scholar 

  105. Baqar S, et al. Comparison of endothelial function and sympathetic nervous system activity along the glucose continuum in individuals with differing metabolic risk profiles and low dietary sodium intake. BMJ Open Diabetes Res Care. 2019;7(1):e000606.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Young BE, et al. Sympathetic transduction in type 2 diabetes mellitus. Hypertension. 2019;74(1):201–7.

    Article  CAS  PubMed  Google Scholar 

  107. Muscelli E, et al. Influence of duration of obesity on the insulin resistance of obese non-diabetic patients. Int J Obes Relat Metab Disord. 1998;22(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  108. Laitinen T, et al. Power spectral analysis of heart rate variability during hyperinsulinemia in nondiabetic offspring of type 2 diabetic patients: evidence for possible early autonomic dysfunction in insulin–resistant subjects. Diabetes. 1999;48(6):1295–9.

    Article  CAS  PubMed  Google Scholar 

  109. Gans ROB, et al. Acute hyperinsulinemia induces sodium retention and a blood pressure decline in diabetes mellitus. Hypertension. 1992;20:199–209.

    Article  CAS  PubMed  Google Scholar 

  110. Tack CJ, et al. Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes. 1996;45(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  111. Gosmanov AR, et al. Effects of oral and intravenous fat load on blood pressure, endothelial function, sympathetic activity, and oxidative stress in obese healthy subjects. Am J Physiol Endocrinol Metab. 2010;299(6):E953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gaboury CL, et al. Relation of pressor responsiveness to angiotensin II and insulin resistance in hypertension. J Clin Invest. 1994;94:2295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ikeda T, et al. Improvement of insulin sensitivity contributes to blood pressure reduction after weight loss in hypertensive subjects with obesity. Hypertension. 1996;27(5):1180–6.

    Article  CAS  PubMed  Google Scholar 

  114. Grassi G, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation. 1998;97(20):2037–42.

    Article  CAS  PubMed  Google Scholar 

  115. Esposito K, et al. Sympathovagal balance, nighttime blood pressure, and QT intervals in normotensive obese women. Obes Res. 2003;11(5):653–9.

    Article  PubMed  Google Scholar 

  116. Nicoletti G, et al. Effect of a multidisciplinary program of weight reduction on endothelial functions in obese women. J Endocrinol Investig. 2003;26(3):RC5–8.

    Article  CAS  Google Scholar 

  117. Straznicky NE, et al. Weight loss may reverse blunted sympathetic neural responsiveness to glucose ingestion in obese subjects with metabolic syndrome. Diabetes. 2009;58(5):1126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Viljanen AP, et al. Effects of weight loss on visceral and abdominal subcutaneous adipose tissue blood-flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med. 2009;41(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  119. Nicoll R, Henein MY. Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. Int J Mol Sci. 2018;19(3):751.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nolan JJ, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med. 1994;331:1188–93.

    Article  CAS  PubMed  Google Scholar 

  121. Ghazzi MN, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone study group. Diabetes. 1997;46(3):433–9.

    Article  CAS  PubMed  Google Scholar 

  122. Gerber P, et al. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2003;19(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  123. Viljanen AP, et al. Rosiglitazone treatment increases subcutaneous adipose tissue glucose uptake in parallel with perfusion in patients with type 2 diabetes: a double-blind, randomized study with metformin. J Clin Endocrinol Metab. 2005;90(12):6523–8.

    Article  CAS  PubMed  Google Scholar 

  124. Paradisi G, et al. Troglitazone therapy improves endothelial function to near normal levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(2):576–80.

    Article  CAS  PubMed  Google Scholar 

  125. Tack CJ, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia. 1998;41(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  126. Gamboa A, et al. Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension. 2014;64(4):867–74.

    Article  CAS  PubMed  Google Scholar 

  127. Shankar SS, et al. Insulin sensitivity is preserved despite disrupted endothelial function. Am J Physiol Endocrinol Metab. 2006;291(4):E691–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DK 42469, DK20542 (Dr. Baron), and MO1 RR750-19 (Dr. Steinberg) from the National Institutes of Health, and a Veterans Affairs Merit Review Award. Dr. Steinberg was recipient of the CAP award MO1-RR750-19 from the National Institutes of Health. The authors wish to thank Patricia Hill and Daphne Damper for their expert and invaluable help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut O. Steinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sallar, A.S., Steinberg, H.O. (2023). Effects of Insulin on the Vascular System. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics