Skip to main content

Urban Bats, Public Health, and Human-Wildlife Conflict

  • Chapter
  • First Online:
Urban Bats

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Coexistence of humans and bats in cities requires mitigation of two key sources of human-bat conflict: risk of zoonotic disease transmission and human concerns about cleanliness. Bats can transmit infectious diseases to humans, and mitigating this risk is an important challenge for both public health and bat conservation. Bat colonies in buildings (or adjacent to buildings) are often categorised as “nuisance wildlife” even when disease risk is low. These colonies can be noisy and create guano deposits that can be substantial and unsightly. Colonies of fruit bats may also feed on fruit grown for human consumption. In this chapter, we review perceived public health concerns around human-bat cohabitation and the factors that can increase or reduce the risk of disease transmission from urban bats to humans. We briefly review the importance of human dimensions in assessing the risk of zoonotic spillover and other bat-human conflict. We use two case studies (Boxes 11.1 and 11.2) to illustrate the implications of urban bats for human-wildlife conflict and public health: one on guano deposition by Egyptian fruit bats (Rousettus aegyptiacus) and the other on the risk of rabies exposure for humans cohabiting with big brown bats (Eptesicus fuscus). Finally, we briefly consider key priorities for studies of bat-borne disease transmission in cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. World Health Organization (2005) The control of neglected zoonotic diseases: a route to poverty alleviation: report of a joint WHO/DFID-AHP meeting. WHO, Geneva

    Google Scholar 

  2. Plowright RK et al (2021) Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet Heal 5:e237–e245

    Article  Google Scholar 

  3. Irving AT et al (2021) Lessons from the host defences of bats, a unique viral reservoir. Nature 589:363–370

    Article  CAS  Google Scholar 

  4. Huong NQ et al (2020) Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLoS One 15:2013–2014

    Article  Google Scholar 

  5. McFarlane R et al (2012) Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9:24–35

    Article  Google Scholar 

  6. Eskew EA, Olival KJ (2018) De-urbanization and zoonotic disease risk. EcoHealth 15:707–712

    Article  Google Scholar 

  7. Jones M et al (2015) Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses 7:3420–3442

    Article  CAS  Google Scholar 

  8. Zhou H et al (2021) Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184:4380–4391.e14

    Article  CAS  Google Scholar 

  9. Banerjee A (2021) Unraveling the zoonotic origin and transmission of SARS-CoV-2. Trends Ecol Evol 36:180–184

    Article  CAS  Google Scholar 

  10. Brook CE, Dobson AP (2015) Bats as “special” reservoirs for emerging zoonotic pathogens. Trends Microbiol 23:172–180

    Article  CAS  Google Scholar 

  11. Munster VJ et al (2016) Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep 6:1–10

    Article  Google Scholar 

  12. Guito JC et al (2021) Asymptomatic infection of Marburg virus reservoir bats is explained by a strategy of immunoprotective disease tolerance. Curr Biol 31:257–270.e5

    Article  CAS  Google Scholar 

  13. Letko M et al (2020) Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol 18:461–471

    Article  CAS  Google Scholar 

  14. Guy C et al (2020) The influence of bat ecology on viral diversity and reservoir status. Ecol Evol 10:5748–5758

    Article  Google Scholar 

  15. Fenton MB et al (2020) Bat bites and rabies: the Canadian scene. Facets 5:367–380

    Article  Google Scholar 

  16. Plowright RK et al (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc R Soc B Biol Sci 275:861–869

    Article  Google Scholar 

  17. Davy CM et al (2018) White-nose syndrome is associated with increased replication of naturally persisting coronaviruses in bats. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  18. Allocati N et al (2016) Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discovery 2:1–8

    Article  Google Scholar 

  19. Alshukairi AN et al (2018) High prevalence of MERS-CoV infection in camel workers in Saudi Arabia. MBio 9:1–10

    Article  Google Scholar 

  20. Nyakarahuka L et al (2020) A retrospective cohort investigation of seroprevalence of Marburg virus and ebolaviruses in two different ecological zones in Uganda. BMC Infect Dis 20:1–9

    Article  Google Scholar 

  21. Plowright RK et al (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of hendra virus from flying foxes (Pteropus spp.). Proc R Soc B Biol Sci 278:3703–3712

    Article  Google Scholar 

  22. Kessler MK et al (2018) Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.13910

  23. Jaimes JA, Whittaker GR (2018) Feline coronavirus: insights into viral pathogenesis based on the spike protein structure and function. Virology 517:108–121

    Article  CAS  Google Scholar 

  24. Banerjee A et al (2019) Bats and coronaviruses. Viruses 11:7–9

    Article  Google Scholar 

  25. Mollentze N et al (2021) Identifying and prioritizing potential human infecting viruses from their genome sequences. PLoS Biol 19:1–25

    Article  Google Scholar 

  26. Fischhoff IR et al (2021) Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc R Soc B Biol Sci 288:20211651

    Article  CAS  Google Scholar 

  27. Becker DJ et al (2022) Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe. https://doi.org/10.1016/s2666-5247(21)00245-7

  28. Oude Munnink BB et al (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–177

    Article  CAS  Google Scholar 

  29. Griffin BD et al (2021) SARS-CoV-2 infection and transmission in the North American deer mouse. Nat Commun 12:1–10

    Article  Google Scholar 

  30. Hale VL et al (2021) SARS-CoV-2 infection in free-ranging white-tailed deer. Nature 602:481–486

    Article  Google Scholar 

  31. Schlottau K et al (2020) SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1:e218–e225

    Article  CAS  Google Scholar 

  32. Hall JS et al (2021) Experimental challenge of a North American bat species, big brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13949

  33. Yan H et al (2021) ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nat Ecol Evol 5:600–608

    Article  Google Scholar 

  34. Grange ZL et al (2021) Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci U S A 118:20210413

    Article  Google Scholar 

  35. Radvak P et al (2021) SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nat Commun 12:1–15

    Article  Google Scholar 

  36. Pan T et al (2021) Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Ther 6:420

    Article  CAS  Google Scholar 

  37. Shuai H et al (2021) Emerging SARS-CoV-2 variants expand species tropism to rodents. EBioMedicine 73:103643

    Article  CAS  Google Scholar 

  38. Olival KJ et al (2020) Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLoS Pathog 16:1–19

    Article  Google Scholar 

  39. Smith KM et al (2017) Wildlife hosts for OIE-listed diseases: considerations regarding global wildlife trade and host–pathogen relationships. Vet Med Sci 3:71–81

    Article  Google Scholar 

  40. Eskew EA, Carlson CJ (2020) Overselling wildlife trade bans will not bolster conservation or pandemic preparedness. Lancet Planet Heal 4:e215–e216

    Article  Google Scholar 

  41. Kingston T (2016) Cute, creepy, or crispy—how values, attitudes, and norms shape human behavior toward bats. In: Bats in the anthropocene: conservation of bats in a changing world. Springer, Cham, pp 571–595

    Chapter  Google Scholar 

  42. Frick WF et al (2020) A review of the major threats and challenges to global bat conservation. Ann N Y Acad Sci 1469:5–25

    Article  Google Scholar 

  43. Voigt CC et al (2016) Bats and buildings: the conservation of synanthropic bats. In: Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham, pp 427–462

    Chapter  Google Scholar 

  44. O’Shea TJ et al (2016) Multiple mortality events in bats: a global review. Mammal Rev 46:175–190

    Article  Google Scholar 

  45. Cleaveland S, Hampson K (2017) Rabies elimination research: juxtaposing optimism, pragmatism and realism. Proc R Soc B Biol Sci 284:20171220

    Google Scholar 

  46. Gbogbo F, Kyei MO (2017) Knowledge, perceptions and attitude of a community living around a colony of straw-coloured fruit bats (Eidolon helvum) in Ghana after Ebola virus disease outbreak in West Africa. Zoonoses Public Health 64:628–635

    Article  CAS  Google Scholar 

  47. Rocha R et al (2021) Bat conservation and zoonotic disease risk: a research agenda to prevent misguided persecution in the aftermath of COVID-19. Anim Conserv 24:303–307

    Article  Google Scholar 

  48. Sasse DB, Gramza AR (2021) Influence of the COVID-19 pandemic on public attitudes toward bats in Arkansas and implications for bat management. Hum Dimens Wildl 26:90–93

    Article  Google Scholar 

  49. Sheherazade et al (2019) Contributions of bats to the local economy through durian pollination in Sulawesi, Indonesia. Biotropica 51:913–922

    Article  Google Scholar 

  50. Kultzer E (1979) Ecology and geographical range in the fruit-eating cave bat genus Rousettus Gray 1821 – a review. Bonner Zool Beiträge 30:233–275

    Google Scholar 

  51. Korine C et al (1999) Is the Egyptian fruit bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biol Conserv 88:301–306

    Article  Google Scholar 

  52. Mickleburgh SP et al (1992) Old World fruit bats. An action plan for their conservation. IUCN, Gland

    Book  Google Scholar 

  53. Seifert SN et al (2020) Rousettus aegyptiacus bats do not support productive Nipah virus replication. J Infect Dis 221:S407–S413

    Article  CAS  Google Scholar 

  54. Aziz SA et al (2016) The conflict between pteropodid bats and fruit growers: species, legislation and mitigation. In: Kingston T, Voigt C (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham, pp 377–426

    Chapter  Google Scholar 

  55. Tollington S et al (2019) Quantifying the damage caused by fruit bats to backyard lychee trees in Mauritius and evaluating the benefits of protective netting. PLoS One 14:1–13

    Article  Google Scholar 

  56. Izhaki I et al (1995) The effect of bat (Rousettus aegyptiacus) dispersal on seed germination in eastern Mediterranean habitats. Oecologia 101:335–342

    Article  CAS  Google Scholar 

  57. Peters VE et al (2016) Using plant–animal interactions to inform tree selection in tree-based agroecosystems for enhanced biodiversity. Bioscience 66:1046–1056

    Article  Google Scholar 

  58. Richards GC (2002) The development of strategies for management of the flying-fox colony at the Royal Botanic Gardens, Sydney. In: Managing the Grey-headed flying-fox. Royal Zoological Society of New South Wales, Mosman, pp 196–201

    Chapter  Google Scholar 

  59. Harten L et al (2020) The ontogeny of a mammalian cognitive map in the real world. Science 369:194–197

    Article  CAS  Google Scholar 

  60. Agosta SJ (2002) Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Rev 32:179–198

    Article  Google Scholar 

  61. Nadin-Davis SA et al (2010) Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: footprints of an emerging zoonosis. Mol Ecol 19:2120–2136

    Article  CAS  Google Scholar 

  62. Bartlett PC et al (1982) Bats in the belfry: an outbreak of histoplasmosis. Am J Public Health 72:1369–1372

    Article  CAS  Google Scholar 

  63. Bilgi C (1980) Pulmonary histoplasmosis: a review of 50 cases. Can Fam Physician 26:225–22530

    CAS  Google Scholar 

  64. Morris T, Coleman L (2017) Acceptable management practices for bat control activities in structures in Georgia – a guide for nuisance wildlife control operators. White-nose Syndrome Conservation and Recovery Working Group, U.S. Fish and Wildlife Service, Hadley, MA

    Google Scholar 

  65. Pieracci EG et al (2020) Evaluation of species identification and rabies virus characterization among bat rabies cases in the United States. J Am Vet Med Assoc 256:77–84

    Article  Google Scholar 

  66. Walker FM et al (2021) Relatedness and genetic structure of big brown bat (Eptesicus fuscus) maternity colonies in an urban-wildland interface with periodic rabies virus outbreaks. J Wildl Dis 57:303–312

    Article  CAS  Google Scholar 

  67. Combs MA et al (2021) Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob Change Biol 28:1705–1724

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and the editor of this chapter for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Davy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davy, C.M., Banerjee, A., Korine, C., Guy, C., Mubareka, S. (2022). Urban Bats, Public Health, and Human-Wildlife Conflict. In: Moretto, L., Coleman, J.L., Davy, C.M., Fenton, M.B., Korine, C., Patriquin, K.J. (eds) Urban Bats. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-13173-8_11

Download citation

Publish with us

Policies and ethics