Skip to main content

Energy Production from Waste: Biomass Energy

  • Chapter
  • First Online:
Circular Economy and the Energy Market

Abstract

In the world, fossil fuels such as coal and oil are clustered in certain regions and existing resources are rapidly depleting. However, the negative effects of fossil fuels on the environment and animal health make renewable energy sources more important. Renewable energy sources have advantages such as sustainability, less negative environmental impacts than fossil fuels, and their availability in almost every region. Biomass, which appears to be an environmental burden but has great potential, is also one of the renewable energy sources. Biomass; It forms the basis for many secondary energy sources such as biogas, biochar, biohydrogen, and biodiesel. Biomass energy is a source that can provide continuous energy, not intermittently like wind and sun. The easy storage of biomass energy provides an advantage over other renewable energy sources. As a result of storing the endless energy of the sun in plants, biomass energy based on agriculture is offered for use with various technologies. In this study, first of all, the definition of biomass energy, its sources and secondary energy sources produced from biomass energy are mentioned. Afterward, production methods for secondary energy sources and processes such as product purification are mentioned. Finally, some suggestions have been expressed in the context of the energy production approach from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aasadnia, M., Mehrpooya, M., & Ghorbani, B. (2021). A novel integrated structure for hydrogen purification using the cryogenic method. Journal of Cleaner Production, 278, 123872.

    Article  Google Scholar 

  • Abubackar, H. N., Keskin, T., Yazgin, O., Gunay, B., Arslan, K., & Azbar, N. (2019). Biohydrogen production from autoclaved fruit and vegetable wastes by dry fermentation under thermophilic condition. International Journal of Hydrogen Energy, 44(34), 18776–18784.

    Article  Google Scholar 

  • Acaroğlu, M. (2003). Alternatif Enerji Kaynaklar, Atlas Yayn Dağtm, \.Istanbul, Temmuz.

    Google Scholar 

  • Adalı, Z., Dinçer, H., Eti, S., Mikhaylov, A., & Yüksel, S. (2022). Identifying new perspectives on geothermal energy investments. In Multidimensional strategic outlook on global competitive energy economics and finance. Emerald Publishing Limited.

    Google Scholar 

  • Amorim, N. C. S., Alves, I., Martins, J. S., & Amorim, E. L. C. (2014). Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Brazilian Journal of Chemical Engineering, 31(3), 603–612.

    Article  Google Scholar 

  • Ar, F. F. I., Akdağ, F., Malkoç, Y., & Çalşkan, M. (2004). Biyokütle enerjisi ve biyomotorin. Biyoenerji–Biyomotorin, E\.IE \.Idaresi Genel Müdürlüğü, Ankara (pp. 583–594).

    Google Scholar 

  • Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., & Geißen, S.-U. (2015). Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass and Bioenergy, 75, 101–118.

    Article  Google Scholar 

  • Azira, A. M. N., & Aisah, A. U. (2019). Purification of biohydrogen from fermentation gas mixture using two-stage chemical absorption. E3S Web of Conferences, 90, 1012.

    Article  Google Scholar 

  • Bhuiyan, M. A., Dinçer, H., Yüksel, S., Mikhaylov, A., Danish, M. S. S., Pinter, G., et al. (2022). Economic indicators and bioenergy supply in developed economies: QROF-DEMATEL and random forest models. Energy Reports, 8, 561–570.

    Article  Google Scholar 

  • Brentner, L. B., Peccia, J., & Zimmerman, J. B. (2010). Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda. Environmental Science & Technology, 44(7), 2243–2254.

    Article  Google Scholar 

  • Chen, C.-Y., Yang, M.-H., Yeh, K.-L., Liu, C.-H., & Chang, J.-S. (2008). Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 33(18), 4755–4762.

    Article  Google Scholar 

  • Dinçer, H., Yüksel, S., & Martínez, L. (2022). Collaboration enhanced hybrid fuzzy decision-making approach to analyze the renewable energy investment projects. Energy Reports, 8, 377–389.

    Article  Google Scholar 

  • Ding, Z., Yüksel, S., & Dincer, H. (2021). An Integrated Pythagorean fuzzy soft computing approach to environmental management systems for sustainable energy pricing. Energy Reports, 7, 5575–5588.

    Article  Google Scholar 

  • Dong, W., Zhao, G., Yüksel, S., Dinçer, H., & Ubay, G. G. (2022). A novel hybrid decision making approach for the strategic selection of wind energy projects. Renewable Energy, 185, 321–337.

    Article  Google Scholar 

  • Engler, C. R., Jordan, E. R., McFarland, M. J., & Lacewell, R. D. (1999). Economics and environmental impact of biogas production as a manure management strategy. Biological & Agricultural Engineering, Texas A & M.

    Google Scholar 

  • Fang, S., Zhou, P., Dinçer, H., & Yüksel, S. (2021). Assessment of safety management system on energy investment risk using house of quality based on hybrid stochastic interval-valued intuitionistic fuzzy decision-making approach. Safety Science, 141, 105333.

    Article  Google Scholar 

  • Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy, 40(13), 4502–4511.

    Article  Google Scholar 

  • Haiyun, C., Zhixiong, H., Yüksel, S., & Dinçer, H. (2021). Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach. Renewable and Sustainable Energy Reviews, 143, 110844.

    Article  Google Scholar 

  • Hoàng, T. Y., Khoo, K. S., Ngọc, H. L. T., Thu, Q. T. T., Thị, T. Đ., Thu, H. Đ. T., Hoàng, H. C., Chinthalapati, S., Lay, C.-H., & Show, P. L. (2021). Sustainable cultivation via waste soybean extract for higher vaccenic acid production by purple non-sulfur bacteria. Clean Technologies and Environmental Policy, 23(1), 103–112.

    Article  Google Scholar 

  • Jayabalan, T., Matheswaran, M., Radhakrishnan, T. K., & Mohamed, S. N. (2021). Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Bioresource Technology, 320, 124284.

    Article  Google Scholar 

  • Karayilmazlar, S., Saraçoğlu, N., Çabuk, Y., & Rfat, K. (2011). Biyokütlenin Türkiye’de enerji üretiminde değerlendirilmesi. Bartn Orman Fakültesi Dergisi, 13(19), 63–75.

    Google Scholar 

  • Khoo, K. S., Tan, X., Ooi, C. W., Chew, K. W., Leong, W. H., Chai, Y. H., Ho, S.-H., & Show, P. L. (2021). How does ionic liquid play a role in sustainability of biomass processing? Journal of Cleaner Production, 284, 124772.

    Article  Google Scholar 

  • Kostis, P., Dinçer, H., & Yüksel, S. (2022). Knowledge-based energy investments of European economies and policy recommendations for sustainable development. Journal of the Knowledge Economy, 1–33.

    Google Scholar 

  • Kou, G., Yüksel, S., & Dinçer, H. (2022). Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects. Applied Energy, 311, 118680.

    Article  Google Scholar 

  • Kumar, G., Park, J.-H., Sivagurunathan, P., Lee, S.-H., Park, H.-D., & Kim, S.-H. (2017). Microbial responses to various process disturbances in a continuous hydrogen reactor fed with galactose. Journal of Bioscience and Bioengineering, 123(2), 216–222.

    Article  Google Scholar 

  • Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891.

    Article  Google Scholar 

  • Lay, C.-H., Kuo, S.-Y., Sen, B., Chen, C.-C., Chang, J.-S., & Lin, C.-Y. (2012). Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 37(2), 2050–2057.

    Article  Google Scholar 

  • Li, J., Yüksel, S., Dınçer, H., Mikhaylov, A., & Barykin, S. E. (2022). Bipolar q-ROF hybrid decision making model with golden cut for analyzing the levelized cost of renewable energy alternatives. IEEE Access, 10, 42507–42517.

    Article  Google Scholar 

  • Liu, J., Lv, J., Dinçer, H., Yüksel, S., & Karakuş, H. (2021). Selection of renewable energy alternatives for green blockchain investments: A hybrid IT2-based fuzzy modelling. Archives of Computational Methods in Engineering, 28(5), 3687–3701.

    Article  Google Scholar 

  • Manish, S., & Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33(1), 279–286.

    Article  Google Scholar 

  • Meng, Y., Wu, H., Zhao, W., Chen, W., Dinçer, H., & Yüksel, S. (2021). A hybrid heterogeneous Pythagorean fuzzy group decision modelling for crowdfunding development process pathways of fintech-based clean energy investment projects. Financial Innovation, 7(1), 1–34.

    Article  Google Scholar 

  • Mishra, P., Krishnan, S., Rana, S., Singh, L., Sakinah, M., & Ab Wahid, Z. (2019). Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews, 24, 27–37.

    Article  Google Scholar 

  • Mohammadi, P., Ibrahim, S., Annuar, M. S. M., & Law, S. (2011). Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. Journal of Cleaner Production, 19(14), 1654–1658.

    Article  Google Scholar 

  • Mukhtarov, S., Yüksel, S., & Dinçer, H. (2022). The impact of financial development on renewable energy consumption: Evidence from Turkey. Renewable Energy, 187, 169–176.

    Article  Google Scholar 

  • Nagarajan, D., Dong, C.-D., Chen, C.-Y., Lee, D.-J., & Chang, J.-S. (2021). Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnology Journal, 16(5), 2000124.

    Article  Google Scholar 

  • Oceguera-Contreras, E., Aguilar-Juárez, O., Oseguera-Galindo, D., Macías-Barragán, J., Bolaños-Rosales, R., Mena-Enríquez, M., Arias-García, A., Montoya-Buelna, M., Graciano-Machuca, O., & de León-Rodríguez, A. (2019). Biohydrogen production by vermihumus-associated microorganisms using agro industrial wastes as substrate. International Journal of Hydrogen Energy, 44(20), 9856–9865.

    Article  Google Scholar 

  • Oh, Y.-K., Raj, S. M., Jung, G. Y., & Park, S. (2013). Metabolic engineering of microorganisms for biohydrogen production. In Biohydrogen (pp. 45–65). Elsevier.

    Chapter  Google Scholar 

  • Onursal, E., Oechsner, H., & Ekici, K. (2011). Biogas production potential of rose oil processing wastes and quail manure in Turkiye: Assessment by Hohenheim Batch Test. Tarm Makinalar Bilimi Dergisi, 7(4), 393–398.

    Google Scholar 

  • Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66, 137–162.

    Article  Google Scholar 

  • Ramos, L. R., & Silva, E. L. (2018). Continuous hydrogen production from cofermentation of sugarcane vinasse and cheese whey in a thermophilic anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 43(29), 13081–13089.

    Article  Google Scholar 

  • Rutz, D., & Janssen, R. (2013). Biomass resources for biogas production. In The biogas handbook: Science, production and applications (p. 19). Elsevier.

    Google Scholar 

  • Salem, A. H., Brunstermann, R., Mietzel, T., & Widmann, R. (2018). Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. International Journal of Hydrogen Energy, 43(10), 4856–4865.

    Article  Google Scholar 

  • Saratale, G. D., Saratale, R. G., Banu, J. R., & Chang, J.-S. (2019). Biohydrogen production from renewable biomass resources. In Biohydrogen (pp. 247–277). Elsevier.

    Chapter  Google Scholar 

  • Saravanan, A., Kumar, P. S., Khoo, K. S., Show, P.-L., Carolin, C. F., Jackulin, C. F., Jeevanantham, S., Karishma, S., Show, K.-Y., Lee, D.-J., & Chang, J.-S. (2021). Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresource Technology, 342, 126021.

    Article  Google Scholar 

  • Sazali, N. (2020). Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy, 45(38), 18753–18771.

    Article  Google Scholar 

  • Serezli, E., Yüksel, S., Tamer, İ., & Dinçer, H. (2021). The role of innovative renewable energy investment strategies on macroeconomic stability. In Financial strategies in competitive markets (pp. 165–178). Springer.

    Chapter  Google Scholar 

  • Shao, W., Wang, Q., Rupani, P. F., Krishnan, S., Ahmad, F., Rezania, S., Rashid, M. A., Sha, C., & Din, M. F. M. (2020). Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species. Energy, 197, 117199.

    Article  Google Scholar 

  • Sinharoy, A., & Pakshirajan, K. (2020). A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renewable Energy, 147, 864–873.

    Article  Google Scholar 

  • Sivagurunathan, P., Sen, B., & Lin, C.-Y. (2015). High-rate fermentative hydrogen production from beverage wastewater. Applied Energy, 147, 1–9.

    Article  Google Scholar 

  • Urbaniec, K., & Bakker, R. R. (2015). Biomass residues as raw material for dark hydrogen fermentation—A review. International Journal of Hydrogen Energy, 40(9), 3648–3658.

    Article  Google Scholar 

  • Uzun, H. İ. (2021). Renewable energy and environment in the context of sustainability. In Strategic approaches to energy management (pp. 257–269). Springer.

    Chapter  Google Scholar 

  • Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437–458.

    Article  Google Scholar 

  • Xie, Y., Zhou, Y., Peng, Y., Dinçer, H., Yüksel, S., & an Xiang, P. (2021). An extended Pythagorean fuzzy approach to group decision-making with incomplete preferences for analyzing balanced scorecard-based renewable energy investments. IEEE Access, 9, 43020–43035.

    Article  Google Scholar 

  • Yilmaz, A., Ünvar, S., Tufan, K., & Koçer, A. (2017). Türkiye’de Biyogaz Üretimi ve Biyogaz Üretimi Istatistik Bilgileri. Technological Applied Sciences, 12(4), 218–232.

    Google Scholar 

  • Yüksel, S., Dinçer, H., Çağlayan, Ç., Uluer, G. S., & Lisin, A. (2022). Bitcoin mining with nuclear energy. In Multidimensional strategic outlook on global competitive energy economics and finance. Emerald Publishing Limited.

    Google Scholar 

  • Yüksel, S., Mikhaylov, A., Ubay, G. G., & Uyeh, D. D. (2021). The role of hydrogen in the Black Sea for the future energy supply security of Turkey. In Handbook of research on strategic management for current energy investments (pp. 1–15). IGI Global.

    Chapter  Google Scholar 

  • Zeldes, B. M., Keller, M. W., Loder, A. J., Straub, C. T., Adams, M. W. W., & Kelly, R. M. (2015). Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6, 1209.

    Article  Google Scholar 

  • Zhao, Y., Xu, Y., Yüksel, S., Dinçer, H., & Ubay, G. G. (2021). Hybrid IT2 fuzzy modelling with alpha cuts for hydrogen energy investments. International Journal of Hydrogen Energy, 46(13), 8835–8851.

    Article  Google Scholar 

  • Zhe, L., Yüksel, S., Dinçer, H., Mukhtarov, S., & Azizov, M. (2021). The positive influences of renewable energy consumption on financial development and economic growth. SAGE Open, 11(3), 21582440211040133.

    Article  Google Scholar 

  • Zhou, P., Luo, J., Cheng, F., Yüksel, S., & Dinçer, H. (2021). Analysis of risk priorities for renewable energy investment projects using a hybrid IT2 hesitant fuzzy decision-making approach with alpha cuts. Energy, 224, 120184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil İbrahim Uzun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uzun, H.İ. (2022). Energy Production from Waste: Biomass Energy. In: Dinçer, H., Yüksel, S. (eds) Circular Economy and the Energy Market. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-13146-2_17

Download citation

Publish with us

Policies and ethics