Skip to main content

Smart Production and Manufacturing: A Research Field with High Potential for the Application of Neurophysiological Tools

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2022)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 58))

Included in the following conference series:

  • 327 Accesses

Abstract

The concepts of Smart Production and Industry 4.0 refer to the connection of physical production with digital technology and advanced analytics to create a more holistic and flexible ecosystem. The human worker is a central element, who is mentally supported in her daily routine and decision-making processes by data-based assistive systems. Currently, there are few studies that scientifically demonstrate the effectiveness of these systems. While behavioral methods and self-report instruments are commonly used to assess cognitive workload, mental fatigue, and stress, among other variables, neurophysiological tools provide promising complementary insights. This work outlines four important application areas for the use of neurophysiology in smart production and manufacturing. The current work has the goal to instigate further research in the study domain, both theoretical and empirical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klocke, F., Bassett, E., Bönsch, C., Gärtner, R., Holsten, S., Jamal, R., Jurke, B., Kamps, S., Kerzel, U., Mattfeld, P., Shirobokov, A., Stauder, J., Stautner, M., & Trauth, D. (2017). Assistenzsysteme in der Produktionstechnik. Internet of Production fĂ¼r agile Unternehmen. AWK Aachener Werkzeugmaschinen-Kolloquium, 287–313.

    Google Scholar 

  2. Korn, O., Schmidt, A., & Hörz. T. (2012). Assistive systems in production environments: exploring motion recognition and gamification. In Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA ‘12) (1–5). ACM.

    Google Scholar 

  3. Funk, M., Kosch, T., Schmidt, A. (2016). Interactive worker assistance: Comparing the effects of head-mounted displays, in-situ projection, tablet, and paper instructions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.

    Google Scholar 

  4. Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., & Schmidt, A. (2017). Working with augmented reality? A long-term analysis of in-situ instructions at the assembly workplace. In Proceedings of the 10th ACM International Conference on Pervasive Technologies Related to Assistive Environments.

    Google Scholar 

  5. Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D. T., & Darzi, A. W. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage, 54, 2922–2936.

    Article  Google Scholar 

  6. Tinga, A. M., de Back, T. T., & Louwerse, M. M. (2020). Non-invasive neurophysiology in learning and training: Mechanisms and a SWOT analysis. Frontiers in Neuroscience, 14, 589.

    Article  Google Scholar 

  7. MĂ¼ller-Putz, G., Riedl, R., & Wriessnegger, S. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. Communications of the Association for Information Systems, 37, 911–948.

    Article  Google Scholar 

  8. Gefen, D., Ayaz, H., & Onaral, B. (2014). Applying functional near infrared (fNIR) spectroscopy to enhance MIS research. AIS Transactions on Human-Computer Interaction, 6, 55–73.

    Article  Google Scholar 

  9. Angioletti, L., Cassioli, F., & Balconi, M. (2020). Neurophysiological correlates of user experience in Smart Home Systems (SHSs): First evidence from electroencephalography and autonomic measures. Frontiers in Psychology, 11.

    Google Scholar 

  10. Fischer, T., & Riedl, R. (2020). Technostress measurement in the field: A case report. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, A. B. Randolph & T. Fischer (Eds.), Information Systems and Neuroscience: NeuroIS Retreat 2020 (vol. 43, pp. 71–78). LNISO. Springer, Cham.

    Google Scholar 

  11. Riedl, R. (2013). On the biology of technostress: Literature review and research agenda. ACM SIGMIS Database: The DATA BASE for Advances in Information Systems, 44, 18–55.

    Article  Google Scholar 

  12. Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2012). Technostress from a neurobiological perspective: System breakdown increases the stress hormone cortisol in computer users. Business & Information Systems Engineering, 4(2), 61–69.

    Article  Google Scholar 

  13. Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2013). Computer breakdown as a stress factor during task completion under time pressure: Identifying gender differences based on skin conductance. Advances in Human-Computer Interaction, 2013, 1–8.

    Article  Google Scholar 

  14. Tams, S., Hill, K., Ortiz de Guinea, A., Thatcher, J., & Grover, V. (2014). NeuroIS—Alternative or complement to existing methods? Illustrating the holistic effects of neuroscience and self-reported data in the context of technostress research. Journal of the Association for Information Systems, 15, 723–753.

    Google Scholar 

  15. Zenisek, J., Wild, N., & Wolfartsberger, J. (2021). Investigating the potential of smart manufacturing technologies. Procedia Computer Science, 180, 507–516.

    Article  Google Scholar 

  16. Ostberg, J., Graziotin, D., Wagner, S., & Derntl, B. (2020). A methodology for psycho-biological assessment of stress in software engineering. PeerJ Computer Science, 6, e286.

    Article  Google Scholar 

  17. Weber, B., Fischer, T., & Riedl, R. (2021). Brain and autonomic nervous system activity measurement in software engineering: A systematic literature review. Journal of Systems & Software, 178, 110946.

    Article  Google Scholar 

  18. Kosch, T., Funk, M., Schmidt, A., & Chuang, L. L. (2018). Identifying cognitive assistance with mobile electroencephalography: A case study with in-situ projections for manual assembly. In Proceedia ACM Human Computer Interaction, 2, 1–20.

    Google Scholar 

  19. Xiao, H., Duan, Y., Zhang, Z., & Li, M. (2018). Detection and estimation of mental fatigue in manual assembly process of complex products. Assembly Automation, 38(2), 239–247.

    Article  Google Scholar 

  20. MĂ¼ller-Putz, G. R., Tunkowitsch, U., Minas, R. K., Dennis, A. R., & Riedl, R. (2021). On electrode layout in EEG studies: A limitation of consumer-grade EEG instruments. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. LĂ©ger, A. B. Randolph & G. MĂ¼ller-Putz (Eds.), Information Systems and Neuroscience: NeuroIS Retreat 2021 (Vol. 52, pp. 90–95). LNISO. Springer, Cham.

    Google Scholar 

  21. Riedl, R., Minas, R. K., Dennis, A. R., & MĂ¼ller-Putz, G. (2020). Consumer-grade EEG instruments: Insights on the measurement quality based on a literature review and implications for NeuroIS research. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. LĂ©ger, A. B. Randolph & G. MĂ¼ller-Putz (Eds.), Information Systems and Neuroscience: NeuroIS Retreat 2020 (Vol. 43, pp. 350–361). LNISO. Springer, Cham.

    Google Scholar 

  22. Wolfartsberger, J., Riedl, R., Jodlbauer, H., Haslinger, N., Hlibchuk, A., Kirisits, A., & Schuh, S. (2022). Virtual Reality als Trainingsmethode: Eine Laborstudie aus dem Industriebereich. HMD, 59, 295–308.

    Article  Google Scholar 

  23. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row, New York.

    Google Scholar 

  24. Tremmel, C., Herff, C., Sato, T., Rechowicz, K., Yamani, Y., & Krusienski, D. (2019). Estimating cognitive workload in an interactive virtual reality environment using EEG. Frontiers in Human Neuroscience, 13, 401.

    Google Scholar 

  25. Rezazadeh, I. M., Wang, X., Firoozabadi, M., & Golpayegani, R. H. (2011). Using affective human–machine interface to increase the operation performance in virtual construction crane training system: A novel approach. Automation in Construction, 20, 289–298.

    Article  Google Scholar 

  26. Wolfartsberger, J. (2019). Analyzing the potential of virtual reality for engineering design review. Automation in Construction, 104, 27–37.

    Article  Google Scholar 

  27. Dey, A., Chatburn, A., & Billinghurst, M. (2019). Exploration of an EEG-based cognitively adaptive training system in virtual reality. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 220–226), Osaka, Japan.

    Google Scholar 

  28. Wolfartsberger, J., Zenisek, J., & Wild, N. (2020). Supporting teamwork in industrial virtual reality applications. Procedia Manufacturing, 42, 2–7.

    Article  Google Scholar 

  29. Marín-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E., Alcañiz, R. M., & Valenza, G. (2018). Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8, 13657.

    Article  Google Scholar 

  30. de Freitas, F. V., Gomes, M. V. M., & Winkler, I. (2022). Benefits and challenges of virtual-reality-based industrial usability testing and design reviews: A patents landscape and literature review. Applied Sciences, 12, 1755.

    Google Scholar 

  31. Evjemo, L., Gjerstad, T., Grøtli, E., & Sziebig, G. (2020). Trends in smart manufacturing: Role of humans and industrial robots in smart factories. Current Robotics Reports, 1, 35–41.

    Article  Google Scholar 

  32. Riedl, R., & LĂ©ger, P. M. (2016). Fundamentals of NeuroIS: Information systems and the brain. Springer, Heidelberg.

    Book  Google Scholar 

  33. Dimoka, A., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., MĂ¼ller-Putz, G. R., Pavlou, P. A., Riedl, R., vom Brocke, J., & Weber, B. (2012). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Quarterly, 36, 679–702.

    Google Scholar 

  34. Riedl, R. (2009). Zum Erkenntnispotenzial der kognitiven Neurowissenschaften fĂ¼r die Wirtschaftsinformatik: Ăœberlegungen anhand exemplarischer Anwendungen. Neu-roPsychoEconomics, 4, 32–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Wolfartsberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolfartsberger, J., Riedl, R. (2022). Smart Production and Manufacturing: A Research Field with High Potential for the Application of Neurophysiological Tools. In: Davis, F.D., Riedl, R., vom Brocke, J., LĂ©ger, PM., Randolph, A.B., MĂ¼ller-Putz, G.R. (eds) Information Systems and Neuroscience. NeuroIS 2022. Lecture Notes in Information Systems and Organisation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-031-13064-9_22

Download citation

Publish with us

Policies and ethics