Skip to main content

Visualising the Dural Venous Sinuses Using Volume Tracing, a Novel Approach

  • Chapter
  • First Online:
Biomedical Visualisation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1392))

Abstract

It is well established that the brain changes dramatically in appearance during gestation and even after birth. Due to the multi-channelled origins and the number of developmental options, the adult venous system is characterised by a higher incidence of anatomical variations than the arterial system. Limited information is available on imaging of the intracranial veins and sinuses. It is therefore important to understand the normal anatomy of the cerebral venous system and its variants in order to provide adequate and comprehensive training to medical students and researchers. We used a novel approach to trace the volumes of the dural venous sinuses. The approach included constructing three-dimensional (3D) models of the dural venous sinuses which could then be used for statistical and morphological analyses. This chapter will expand on current literature and visualisation techniques of the dural venous sinuses. The reader will be presented with a novel way of looking at the venous drainage of the brain and how to use this visualisation in understanding venous anatomy and its clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper F, Kantarci M, Dane S, Gumustekin K, Onbas O, Durur I (2004) Importance of anatomical asymmetries of transverse sinuses: an MR venographic study. Cerebrovasc Dis 18:236–239

    Article  PubMed  Google Scholar 

  • Ayanzen R, Bird C, Keller P, McCully F, Theobald M, Heiserman J (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21(1):74–78

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey A (2016) Your pregnancy matters. Accessed January 2019, from UT Southwestern Medical Center: https://utswmed.org/medblog/fetal-mri/

  • BayaroÄŸullari H, Burakgazi G, Duman T (2018) Evaluation of dural venous sinuses and confluence of sinuses via MRI venography: anatomy, anatomic variations and the classification of variations. Childs Nerv Syst 34(6):1183–1188

    Article  PubMed  Google Scholar 

  • Bell DJ, Gaillard F (2019) Empty delta sign. Retrieved from Radiopaedia: https://radiopaedia.org/articles/empty-delta-sign

  • Bisaria KK (1985) Anatomic variations of venous sinuses in the region of the tocular Herophili. J Neurosurg 62:90–95

    Article  PubMed  CAS  Google Scholar 

  • Bono R, Lupo R, Lavano R, Mangone R, Fera R, Pardatscher R, Quattrone R (2003) Cerebral MR venography of transverse sinuses in subjects with normal CSF pressure. Neurology 61(9):1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Bousser M, Barnett H (1992) Cerebral venous thrombosis. In: Barnett H, Mohr J, Stein B, Yatsu F (eds) Stroke pathophysiology, diagnosis and management, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  • Butler H (1967) The development of mammalian dural venous sinuses with special reference to the post-glenoid vein. J Anat 102(Pt 1):33–56

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson BM (2014) Cardiovascular system. In: Human embryology and developmental biology. Elsevier, Amsterdam, pp 408–452. Retrieved from ScienceDirect: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dorsal-aorta

    Chapter  Google Scholar 

  • Daif A, Awada A, Al-Rajeh S, Abduljabbar M, Al Tahan A, Obeid T, Malibary T (1995) Cerebral venous thrombosis in adults a study of 40 cases from Saudi Arabia. Stroke 26(7):1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Definition: Flow Void (2020) Retrieved from Farlex Partner Medical Dictionary: https://medicaldictionarythefreedictionary.com/flow+void

  • Dekaban A (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4(4):345–356

    Article  PubMed  CAS  Google Scholar 

  • Dixon A (2019) Cord sign (dural sinus thrombosis). Retrieved from Radiopaedia: https://radiopaedia.org/articles/cord-sign-dural-sinus-thrombosis?lang=us

  • Durgun B, Ilgit E, Cizmeli M, Atasever A (1993) Evaluation by angiography of the lateral dominance of the drainage of the dural venous sinuses. Surg Radiol Anat 15(2):125–130

    Article  PubMed  CAS  Google Scholar 

  • Edwards EA (1931) Anatomic variations of cranial venous sinuses. Arch Neurol Psychiatry 26:801–814

    Article  Google Scholar 

  • Egemen E, Solaroglu I (2017) Anatomy of cerebral veins and dural sinuses. In: Zhang LR (ed) Primer on cerebrovascular diseases, 2nd edn. Elsevier, London, pp 32–36

    Chapter  Google Scholar 

  • Elster A (2020) Flow voids. Retrieved from MRI Questions and Answers: http://www.mri-q.com/flow-void.html

  • Fasouliotis SJ, Achiron R, Kivilevitch Z, Yagel S (2002) The human fetal venous system: normal embryologic, anatomic, and physiologic characteristics and developmental abnormalities. J Ultrasound Med 21:1145–1158

    Article  PubMed  Google Scholar 

  • Feger J, Baba Y (2021) Phase-sensitive inversion recovery. Reference article, Radiopaedia.org. Accessed 29 May 2022. https://doi.org/10.53347/rID-90198

  • Ferris N, Goergen S (2018) Gadolinium contrast medium (MRI contrast agents). Retrieved from Inside Radiology: https://www.insideradiology.com.au/gadolinium-contrast-medium/

  • Gao L, Xu W, Tao L, Yu X, Cao S, Xu H, Yan F, Chen G (2018) Accuracy of magnetic resonance venography in diagnosing cerebral venous sinus thrombosis. Thromb Res 167:64–73

    Article  PubMed  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffires NO, Castellanos FX, Liu H, Zijdenbos A, Tomas P, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863

    Article  PubMed  CAS  Google Scholar 

  • Gomez DG, Ehrmann JE, Potts GD, Pavese AM, Gilanian A (1983) The arachnoid granulations of the newborn human: an ultrastructural study. Int J Dev Neurosci:139–145

    Google Scholar 

  • Goyal G, Singh R, Bansal N, Paliwal VK (2016) Anatomical variations of cerebral MR venography: Is gender matter. Neurointervention 11(2):92–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann P, Ramseier A, Gudat F, Mihatsch M, Polasek W (1994) Normal weight of the brain in adults in relation to age, sex, body height and weight. Pathologe 15(3):165–170

    Article  PubMed  CAS  Google Scholar 

  • Haroun A (2005) Utility of contrast-enhanced 3D turbo-flash MR angiography in evaluating the intracranial venous system. Neuroradiology 47(5):322–327

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MA, Hazhirkarzar B, Dublin AB (2021) Gadolinium magnetic resonance imaging. [Updated 2021 Jul 9]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK482487/

  • Jessen N, Munk A, Lundgaard I, Nedergaard M (2015) The Glymphatic system – a beginner’s guide. Neurochem Res:2583–2599

    Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of the human brain development from birth to 2 years. J Neurosci 28(47):12176–12182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korosec F (1999) Basic principles of phase-contrast, time-of-flight, and contrast-enhanced MR angiography. United States of America.

    Google Scholar 

  • Learning L (2020) Physical development. Retrieved from Developmental Psychology: https://courses.lumenlearning.com/suny-hccc-ss-152-1/chapter/physical-development/

  • Liang L, Korogi Y, Sugahara T, Ikushima I, Shigematsu Y, Takahashi M, Provenzale J (2002) Normal structures in the intracranial dural sinuses: delineation with 3D contrast-enhanced magnetisation prepared rapid acquisition gradient-echo imaging sequence. Am J Neuroradiol 23(10):1739–1746

    PubMed  PubMed Central  Google Scholar 

  • Mack J, Squier W, Eastman JT (2009) Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Peadiatr Radiol 39(3):200–210

    Article  Google Scholar 

  • Manara R, Mardari R, Ermani M, Severino M, Santelli L, Carollo C (2010) Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla. La Radiologia Medica 115(2):326–338

    Article  PubMed  CAS  Google Scholar 

  • Mattle HP, Wentz KU, Edelman RR, Wallner B, Finn JP, Barnes P, Atkinson DJ, Kleefield J, Hoogewoud HM (1991) Cerebral venography with MR. Radiology 178:453–458

    Article  PubMed  CAS  Google Scholar 

  • MayoClinic (2020) Brain stereotactic radiosurgery. Retrieved from Mayo Clinic Website: https://www.mayoclinic.org/tests-procedures/brain-stereotactic-radiosurgery/about/pac-20384679

  • Osborn AG (2013) Venous anatomy and occlusions. In: Osborn IAG (ed) Osborn’s brain. AMIRSYS, Salt Lake City, pp 215–241

    Google Scholar 

  • Ozsvath R, Casey S, Lustrin E, Alberico R, Hassankhani A, Patel M (1997) Cerebral venography: comparison of CT and MR projection venography. Am J Roentgenol 169(6):1699–1707

    Article  CAS  Google Scholar 

  • Pallewatte A, Tharmalingam T, Liyanage N (2016) Anatomic variants and artefacts in non-enhanced MRV—potential pitfalls in diagnosing cerebral venous sinus thrombosis (CVST). Sri Lanka J Radiol 2(1):40–46

    Article  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. JAMA Neurol 51(9):874–887

    CAS  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res:1–20

    Google Scholar 

  • Prada F, Del Bene M, Mauri G, Lamperti M, Vailati D, Richetta C, Saini M, Santuari D, Kalani YS, DiMecco F (2018) Dynamic assessment of venous anatomy and function in neurosurgery with real-time intraoperative multimodal ultrasound: technical note. Neurosurg Focus 45(1):E6

    Article  PubMed  Google Scholar 

  • Rollins N, Ison C, Booth T, Chia J (2005) MR venography in the pediatric patient. Am J Neuroradiol 26(1):50–55

    PubMed  PubMed Central  Google Scholar 

  • Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH (2015) Development of the gastrointestinal. In: Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH (eds) Larsen’s human embryology, 5th edn. Elsevier, Philadelpia, pp 369–371

    Google Scholar 

  • Sharma U, Sharma K (2012) Intracranial MR venography using low-field magnet: normal anatomy and variations in Nepalese population. J Nepal Med Assoc 52(186):61–65

    Article  CAS  Google Scholar 

  • Singh M, Nagashima M, Inoue Y (2004) Anatomical variations of occipital bone impressions for dural venous sinuses around the torcular herophili, with special reference to the consideration of clinical significance. Surg Radiol Anat 26(6):480–487

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PL, Leonard CM, Welcom SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Streeter G (1915) The development of the venous sinuses of the dura mater in the human embryo. Am J Anat 18(2):145–178

    Article  Google Scholar 

  • Surendrababu N, Livingstone R (2006) Variations in the cerebral venous anatomy and pitfalls in the diagnosis of cerebral venous sinus thrombosis: low field MR experience. Indian J Med Sci 60(4):135–142

    Article  PubMed  CAS  Google Scholar 

  • Tapia QD, Araza AC, Hidrobo L, Casals O, Viano Lopez J (2014) Intracranial venous pathology. European Society of Radiology, poster

    Google Scholar 

  • Tubbs SR (2019) Anatomy, imaging and surgery of the intracranial dural venous sinuses. Elsevier, St. Louis

    Google Scholar 

  • UCSF (2017) Fetal MRI. Accessed January 2019, from The Fetal Treatment Centre: https://fetus.ucsf.edu/fetal-mri

  • VogI T, Bergman C, Villringer A, Einhupl K, Lissner J, Felix R (1994) Dural sinus thrombosis: value of venous MR angiography for diagnosis and follow-up. Am J Roentgenol 162(5):1191–1198

    Article  Google Scholar 

  • Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119(2):957–1057. https://doi.org/10.1021/acs.chemrev.8b00363

    Article  PubMed  CAS  Google Scholar 

  • Wetzel SG, Kirsch E, Stock KW, Kolbe M, Kaim A, Radue EW (1999) Cerebral veins: comparative study of CT venography with intra-arterial digital subtraction angiography. Am J Neuroradiol 20(2):249–255

    PubMed  PubMed Central  CAS  Google Scholar 

  • Widjaja E, Griffiths P (2004) Intracranial MR venography in children: normal anatomy and variations. Am J Neuroradiol 25(9):1557–1562

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JJ, Hill MD, Morrish WF, Hudon ME, Barber PA, Demchuk AM, Sevick RJ, Frayne R (2002) Comparison of pre- and postcontrast 3D time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. AJNR Am J Neuroradiol 23(4):557–567. PMID: 11950644; PMCID: PMC7975126

    PubMed  PubMed Central  Google Scholar 

  • Yigit H, Turan A, Ergun E, Kosar P, Kosar U (2012) Time-resolved MR angiography of the intracranial venous system: an alternative MR venography technique. Eur Radiol 22(5):980–989

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

du Toit, F., Louw, G. (2023). Visualising the Dural Venous Sinuses Using Volume Tracing, a Novel Approach. In: Shapiro, L., Rea, P.M. (eds) Biomedical Visualisation . Advances in Experimental Medicine and Biology, vol 1392. Springer, Cham. https://doi.org/10.1007/978-3-031-13021-2_4

Download citation

Publish with us

Policies and ethics