Skip to main content

Laboratory Indices/Bioimaging

  • Chapter
  • First Online:
Blood Pressure Disorders in Diabetes Mellitus

Abstract

As hypertension and diabetes mellitus (DM) are commonly associated, hypertensive individuals should be regularly screened for diabetes and vice versa, possibly on an annual basis. In patients with hypertension and concomitant diabetes, the risk of developing cardiovascular disease (CVD), macrovascular diseases, and/or microvascular diseases is two- to fivefold greater than in patients with either hypertension or DM. In patients with DM, the presence of hypertension may contribute to the development/progression of diabetic nephropathy and CV damage.

Laboratory results are useful to investigate and diagnose the presence of prediabetes or diabetes in hypertensive patients and to correctly stratify the global CV risk. Several traditional and newly developed noninvasive imaging techniques are indicated to assess subclinical organ damage and therefore to increase our ability to detect organ damage early and prevent further evolution towards heart failure, coronary artery and peripheral disease, stroke, and chronic kidney disease.

According to the SCORE (Systematic COronary Risk Evaluation) system, patients with DM have a high or a very high risk of 10-year CV death (except some young people with type 1 diabetes mellitus and without major risk factors, who may be at moderate risk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  2. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65(6):2309–20.

    PubMed  Google Scholar 

  3. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med. 2003;139(11):901–6. https://doi.org/10.7326/0003-4819-139-11-200312020-00008.

    Article  PubMed  Google Scholar 

  4. Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev. 2020;27(6):515–26. https://doi.org/10.1007/s40292-020-00408-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koye DN, Magliano DJ, Reid CM, Keane WF, Zhang Z, Shahinfar S, et al. Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2018;72(5):653–61.

    PubMed  Google Scholar 

  6. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, et al. ADVANCE Collaborative Group. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20:1813–21.

    PubMed  PubMed Central  Google Scholar 

  7. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041.

    CAS  PubMed  Google Scholar 

  8. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, et al. Creactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.

    Google Scholar 

  9. Hendriks SH, van Dijk PR, van Hateren KJ, van Pelt JL, Groenier KH, Bilo HJ, et al. High-sensitive troponin T is associated with all-cause and cardiovascular mortality in stable outpatients with type 2 diabetes (ZODIAC-37). Am Heart J. 2016;174:43–50.

    CAS  PubMed  Google Scholar 

  10. Tang O, Daya N, Matsushita K, Coresh J, Sharrett AR, Hoogeveen R, et al. Performance of high-sensitivity cardiac troponin assays to reflect comorbidity burden and improve mortality risk stratification in older adults with diabetes. Diabetes Care. 2020;43(6):1200–8. https://doi.org/10.2337/dc19-2043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergmark BA, Scirica BM, Steg PG, Fanola CL, Gurmu Y, Mosenzon O, et al. SAVOR-TIMI 53 Investigators.Blood pressure and cardiovascular outcomes in patients with diabetes and high cardiovascular risk. Eur Heart J. 2018;39(24):2255–62. https://doi.org/10.1093/eurheartj/ehx809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galsgaard J, Persson F, Hansen TW, Jorsal A, Tarnow L, Parving HH, Rossing P. Plasma high-sensitivity troponin T predicts end-stage renal disease and cardiovascular and all-cause mortality in patients with type 1 diabetes and diabetic nephropathy. Kidney Int. 2017;92:1242–8.

    CAS  PubMed  Google Scholar 

  13. Hildebrandt P, Richards MA. Amino-terminal pro-B-type natriuretic peptide testing in patients with diabetes mellitus and with systemic hypertension. Am J Cardiol. 2008;101(3A):21–4. https://doi.org/10.1016/j.amjcard.2007.11.015.

    Article  CAS  PubMed  Google Scholar 

  14. Tarnow L, Hildebrandt P, Hansen BV, Borch-Johnsen K, Parving HH. Plasma N-terminal pro-brain natriuretic peptide as an independent predictor of mortality in diabetic nephropathy. Diabetologia. 2005;48:149–55.

    CAS  PubMed  Google Scholar 

  15. Gaede P, Hildebrandt P, Hess G, Parving HH, Pedersen O. Plasma N-terminal pro-brain natriuretic peptide as a major risk marker for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. Diabetologia. 2005;48:156–63.

    CAS  PubMed  Google Scholar 

  16. Huelsmann M, Neuhold S, Strunk G, Moertl D, Berger R, Prager R, et al. NT-proBNP has a high negative predictive value to rule-out short-term cardiovascular events in patients with diabetes mellitus. Eur Heart J. 2008;29:2259–64.

    CAS  PubMed  Google Scholar 

  17. Rorth R, Jhund P, Kristensen S, Desai A, Køber L, Rouleau J, et al. The prognostic value of troponin T and N-terminal pro B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. Eur J Heart Fail. 2019;21:40–9.

    CAS  PubMed  Google Scholar 

  18. Somaratne JB, Whalley GA, Poppe KK, ter Bals MM, Wadams G, Pearl A, et al. Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc Diabetol. 2011;10:29. https://doi.org/10.1186/1475-2840-10-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gamella-Pozuelo L, Fuentes-Calvo I, Gómez-Marcos MA, Recio-Rodriguez JI, Agudo-Conde C, Fernández-Martín JL, et al. Plasma cardiotrophin-1 as a marker of hypertension and diabetes-induced target organ damage and cardiovascular risk. Medicine (Baltimore). 2015;94(30):e1218. https://doi.org/10.1097/MD.0000000000001218.

    Article  CAS  PubMed  Google Scholar 

  20. Bacharova L, Krivosikova Z, Wsolova L, Gajdos M. Alterations in the QRS complex in the offspring of patients with metabolic syndrome and diabetes mellitus: early evidence of cardiovascular pathology. J Electrocardiol. 2012;45:244–51.

    PubMed  Google Scholar 

  21. Flugelman MY, Kanter Y, Abinader EG, Lewis BS, Barzilai D. Electrocardiographic patterns in diabetics without clinical ischemic heart disease. Isr J Med Sci. 1983;19:252–5.

    CAS  PubMed  Google Scholar 

  22. Okin PM, Devereux RB, Nieminen MS, Jern S, Oikarinen L, Viitasalo M, et al. Electrocardiographic strain pattern and prediction of new-onset congestive heart failure in hypertensive patients. The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Study. Circulation. 2006;113:67–73.

    PubMed  Google Scholar 

  23. Li X, Ren H, Xu Z, Liu Y, Yang X, Liu J. Prevalence and risk factors of prolonged QTc Interval among Chinese patients with type 2 diabetes. Exp Diabetes Res. 2012;2012:234084. https://doi.org/10.1155/2012/234084.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cerutti F, Rabbia F, Rabbonei I, Bobbio A, Ignaccolo MG, Greco G, et al. Impairment of cardiovascular autonomic pattern in obese adolescents with type 2 diabetes mellitus. J Endocrinol Investig. 2010;33:539–43.

    CAS  Google Scholar 

  25. Assanelli D, Di Castelnuovo A, Rago L, Badilini F, Vinetti G, Gianfagna F, et al. Moli-sani Project Investigators. T-wave axis deviation and left ventricular hypertrophy interaction in diabetes and hypertension. J Electrocardiol. 2013;46(6):487–91. https://doi.org/10.1016/j.jelectrocard.2013.08.002.

    Article  PubMed  Google Scholar 

  26. Muiesan ML, Salvetti M, Di Castelnuovo A, Paini A, Assanelli D, Costanzo S, et al. Moli-sani Study Investigators. Obesity and ECG left ventricular hypertrophy. J Hypertens. 2017;35(1):162–9. https://doi.org/10.1097/HJH.0000000000001121.

  27. Okin PM, Devereux RB, Harris KE, Jern S, Kjeldsen SE, Lindholm LH, et al. LIFE Study Investigators. In-treatment resolution or absence of electrocardiographic left ventricular hypertrophy is associated with decreased incidence of new-onset diabetes mellitus in hypertensive patients: the Losartan Intervention for Endpoint reduction in hypertension (LIFE) Study. Hypertension. 2007;50:984–90.

    CAS  PubMed  Google Scholar 

  28. Okin PM, Devereux RB, Gerdts E, Snapinn SM, Harris KE, Jern S, et al. LIFE Study Investigators. Impact of diabetes mellitus on regression of electrocardiographic left ventricular hypertrophy and the prediction of outcome during antihypertensive therapy: the Losartan Intervention For Endpoint (LIFE) Reduction in Hypertension Study. Circulation. 2006;113(12):1588–96.

    CAS  PubMed  Google Scholar 

  29. Soliman E, Byington R, Bigger T, Evans G, Okin P, Goff D, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with diabetes mellitus: action to control cardiovascular risk in Diabetes Blood Pressure Trial. Hypertension. 2015;66(6):1123–9. https://doi.org/10.1161/HYPERTENSIONAHA.115.06236.

    Article  CAS  PubMed  Google Scholar 

  30. Hadaegh F, Ehteshami-Afshar S, Hajebrahimi MA, Hajsheikholeslami F, Azizi F. Silent coronary artery disease and incidence of cardiovascular and mortality events at different levels of glucose regulation; results of greater than a decade follow-up. Int J Cardiol. 2015;182:334–9.

    CAS  PubMed  Google Scholar 

  31. Yang Y, Li W, Zhu H, Pan XF, Hu Y, Arnott C, et al. Prognosis of unrecognised myocardial infarction determined by electrocardiography or cardiac magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2020;369:m1184. https://doi.org/10.1136/bmj.m1184.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–6. https://doi.org/10.1161/01.CIR.101.19.2271.

    Article  CAS  PubMed  Google Scholar 

  33. Cioffi G, Faggiano P, Lucci D, Di LA, Mureddu GF, Tarantini L, et al. Inappropriately high left ventricular mass in patients with type 2 diabetes mellitus and no overt cardiac disease. The DYDA Study. J Hypertens. 2011;29(10):1994–2003. https://doi.org/10.1097/HJH.0b013e32834acc6d.

    Article  CAS  PubMed  Google Scholar 

  34. Palmieri V, Bella JN, Arnett DR, Liu JE, Oberman A, Schuck M-Y, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) Study. Circulation. 2001;103:102–7.

    CAS  PubMed  Google Scholar 

  35. Bella JN, Devereux RB, Roman MJ, Palmieri V, Liu JE, Paranicas M, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol. 2001;87:1260–5.

    CAS  PubMed  Google Scholar 

  36. Ernande L, Audureau E, Jellis CL, Bergerot C, Henegar C, Sawaki D, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol. 2017;70:1704–16.

    PubMed  Google Scholar 

  37. Gerdts E, Okin PM, Omvik P, Wachtell K, Dahlöf B, Hildebrandt P, et al. Impact of diabetes on treatment-induced changes in left ventricular structure and function in hypertensive patients with left ventricular hypertrophy. The LIFE study. Nutr Metab Cardiovasc Dis. 2009;19(5):306–12.

    CAS  PubMed  Google Scholar 

  38. Perrone-Filardi P, Coca A, Galderisi M, Paolillo S, Alpendurada F, de Simone G, et al. Noninvasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus article from the European Association of Cardiovascular Imaging, the European Society of Cardiology Council on Hypertension and the European Society of Hypertension. J Hypertens. 2017;35(9):1727–41.

    CAS  PubMed  Google Scholar 

  39. Tadic M, Cuspidi C, Calicchio F, Grassi G, Mancia G. Diabetic cardiomyopathy: how can cardiac magnetic resonance help? Acta Diabetol. 2020;57(9):1027–34.

    PubMed  Google Scholar 

  40. Li XM, Jiang L, Guo YK, Ren Y, Han P, Peng L, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: a 3.0 T cardiac magnetic resonance study. Cardiovasc Diabetol. 2020;19(1):161.

    Google Scholar 

  41. Valenti V, Hartaigh O, Heo R, Schulman-Marcus J, Cho I, Kalra DK, et al. Long-term prognosis for individuals with hypertension undergoing coronary artery calcium scoring. Int J Cardiol. 2015;187:534–40.

    PubMed  PubMed Central  Google Scholar 

  42. Uddin SMI, Mirbolouk M, Kianoush S, Orimoloye OA, Dardari Z, Whelton SP, et al. Role of coronary artery calcium for stratifying cardiovascular risk in adults with hypertension. Hypertension. 2019;73:983–9.

    CAS  PubMed  Google Scholar 

  43. Valenti V, Hartaigh BO, Cho I, Schulman-Marcus J, Gransar H, Heo R, et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circ Cardiovasc Imaging. 2016;9:e003528.

    PubMed  PubMed Central  Google Scholar 

  44. Elkeles RS, Feher MD, Flather MD, Godsland IF, Nugara F, Richmond W, et al. The association of coronary calcium score and conventional cardiovascular risk factors in Type 2 diabetic subjects asymptomatic for coronary heart disease (The PREDICT Study). Diabet Med. 2004;21(10):1129–34.

    CAS  PubMed  Google Scholar 

  45. Nicoll R, Zhao Y, Ibrahimi P, Olivecrona G, Henein M. Diabetes and hypertension consistently predict the presence and extent of coronary artery calcification in symptomatic patients: a systematic review and meta-analysis. Int J Mol Sci. 2016;17(9):1481. https://doi.org/10.3390/ijms17091481.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, et al. Diabetic cardiomyopathy a comprehensive updated review. Prog Cardiovasc Dis. 2019;62(4):315–26.

    PubMed  Google Scholar 

  47. Makrilakis K, Liatis S. Cardiovascular screening for the asymptomatic patient with diabetes: more cons than pros. J Diabetes Res. 2017;2017:8927473.

    PubMed  PubMed Central  Google Scholar 

  48. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid artery intima-media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.

    PubMed  Google Scholar 

  49. Lorenz MW, Price JF, Robertson C, Bots ML, Polak JF, Poppert H, et al. Carotid intima-media thickness progression and risk of vascular events in people with diabetes: results from the PROG-IMT Collaboration. Diabetes Care. 2015;38(10):1921–9. https://doi.org/10.2337/dc14-2732.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wagenknecht LE, D’Agostino RB Jr, Haffner SM, Savage PJ, Rewers M. Impaired glucose tolerance, type 2 diabetes, and carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Diabetes Care. 1998;21:1812–8.

    CAS  PubMed  Google Scholar 

  51. Temelkova-Kurktschiev TS, Koehler C, Leonhardt W, Schaper F, Henkel E, Siegert G, et al. Increased intimal-medial thickness in newly detected type 2 diabetes: risk factors. Diabetes Care. 1999;22:333–8.

    CAS  PubMed  Google Scholar 

  52. Brohall G, Odén A, Fagerberg B. Carotid artery intima-media thickness in patients with type 2 diabetes mellitus and impaired glucose tolerance: a systematic review. Diabet Med. 2006;23:609–16.

    CAS  PubMed  Google Scholar 

  53. Mykkanen L, Zaccaro D, O’Leary D, Howard G, Robbins D, Haffner S. Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects: the Insulin Resistance Atherosclerosis Study (IRAS). Stroke. 1997;28:1710–6.

    Google Scholar 

  54. Agewall S, Wikstrand J, Ljungman S, Fagerberg B. Urinary albumin excretion is associated with the intima-media thickness of the carotid artery in hypertensive males with non-insulin-dependent diabetes mellitus. J Hypertens. 1995;13:463–9.

    CAS  PubMed  Google Scholar 

  55. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Desvarieux M, et al. Advisory Board of the 3rd Watching the Risk Symposium 2004, 13th European Stroke Conference. Mannheim intima-media thickness consensus. Cerebrovasc Dis. 2004;18:346–9.

    Google Scholar 

  56. Akazawa S, Tojikubo M, Nakano Y, Nakamura S, Tamai H, Yonemoto K, et al. Usefulness of carotid plaque (sum and maximum of plaque thickness) in combination with intima-media thickness for the detection of coronary artery disease in asymptomatic patients with diabetes. J Diabetes Investig. 2016;7:396–403.

    PubMed  Google Scholar 

  57. Irie Y, Katakami N, Kaneto H, Takahara M, Nishio M, Kasami R, et al. The utility of ultrasonic tissue characterization of carotid plaque in the prediction of cardiovascular events in diabetic patients. Atherosclerosis. 2013;230:399–405.

    CAS  PubMed  Google Scholar 

  58. Tedesco MA, Natale F, Di Salvo G, Caputo S, Capasso M, Calabro R. Effects of coexisting hypertension and type II diabetes mellitus on arterial stiffness. J Hum Hypertens. 2004;18(7):469–73. https://doi.org/10.1038/sj.jhh.1001690.

    Article  CAS  PubMed  Google Scholar 

  59. Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D, Stea F, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia. 2012;55(6):1847–55. https://doi.org/10.1007/s00125-012-2517-1.

    Article  CAS  PubMed  Google Scholar 

  60. Galvão RDV, Pereira CS, Freitas EGB, Lima DRART, Santos WAM, Souza DF, et al. Association between diabetes mellitus and central arterial stiffness in elderly patients with systemic arterial hypertension. Clin Exp Hypertens. 2020;42(8):728–32.

    PubMed  Google Scholar 

  61. Yeboah K, Antwi DA, Gyan B, Govoni V, Mills CE, Cruickshank JK, et al. Arterial stiffness in hypertensive and type 2 diabetes patients in Ghana: comparison of the cardio-ankle vascular index and central aortic techniques. BMC Endocr Disord. 2016;16(1):53.

    PubMed  PubMed Central  Google Scholar 

  62. Cooke AB, Dasgupta K, Spronck B, Sharman JE, Daskalopoulou SS. Adults with type 2 diabetes mellitus exhibit a greater exercise-induced increase in arterial stiffness and vessel hemodynamics. Hypertension. 2020;75(6):1565–73.

    CAS  PubMed  Google Scholar 

  63. Liu JJ, Liu S, Lee J, Gurung RL, Yiamunaa M, Ang K, et al. Aortic pulse wave velocity, central pulse pressure, augmentation index and chronic kidney disease progression in individuals with type 2 diabetes: a 3-year prospective study. BMC Nephrol. 2020;21(1):359.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    PubMed  Google Scholar 

  65. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909.

    Google Scholar 

  66. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326(6):381–6.

    CAS  PubMed  Google Scholar 

  67. Ankle Brachial Index Collaboration, Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300(2):197–208.

    PubMed Central  Google Scholar 

  68. Hanssen NM, Huijberts MS, Schalkwijk CG, Nijpels G, Dekker JM, Stehouwer CD. Associations between the ankle-brachial index and cardiovascular and all cause mortality are similar in individuals without and with type 2 diabetes: nineteen-year follow-up of a population-based cohort study. Diabetes Care. 2012;35:1731–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Alves-Cabratosa L, Comas-Cufí M, Ponjoan A, Garcia-Gil M, Martí-Lluch R, Blanch J, et al. Levels of ankle-brachial index and the risk of diabetes mellitus complications. BMJ Open Diabetes Res Care. 2020;8(1):e000977. https://doi.org/10.1136/bmjdrc-2019-000977.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alves-Cabratosa L, Elosua-Bayes M, García-Gil M, Comas-Cufí M, Martí-Lluch R, Ponjoan A. Hypertension and high ankle brachial index: the overlooked combination. J Hypertens. 2019;37(1):92–8.

    CAS  PubMed  Google Scholar 

  71. Criqui MH, Ninomiya JK, Wingard DL, Ji M, Fronek A. Progression of peripheral arterial disease predicts cardiovascular disease morbidity and mortality. J Am Coll Cardiol. 2008;52(21):1736–42.

    PubMed  PubMed Central  Google Scholar 

  72. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–81.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lorenza Muiesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muiesan, M.L., Agabiti-Rosei, C., De Ciuceis, C., Salvetti, M., Paini, A. (2023). Laboratory Indices/Bioimaging. In: Berbari, A.E., Mancia, G. (eds) Blood Pressure Disorders in Diabetes Mellitus. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-13009-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13009-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13008-3

  • Online ISBN: 978-3-031-13009-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics