Skip to main content

Environmental and Infectious Causes of Bronchiectasis

  • Chapter
  • First Online:
Bronchiectasis

Part of the book series: Respiratory Medicine ((RM))

Abstract

In this chapter, environmental and microbiological causes of bronchiectasis will be reviewed, including the effect of air pollution, as well as the role various bacteria, fungi, and viruses play in the development and progression of bronchiectasis. Treatment of these organisms is covered elsewhere in this text. The current knowledge base varies widely within these areas. For example, there is limited knowledge on the impact of environmental pollutants on the development of bronchiectasis. In contrast, there is extensive knowledge on how the nontuberculous mycobacteria cause pulmonary disease. In most areas related to infection in bronchiectasis, the majority of the current data comes from extrapolation from research in cystic fibrosis; here, we will aim to focus on research more specifically related to non-CF bronchiectasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caballero A, Torres-Duque CA, Jaramillo C, Bolivar F, Sanabria F, Osorio P, Orduz C, Guevara DP, Maldonado D. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest. 2008;133(2):343–9. https://doi.org/10.1378/chest.07-1361.

    Article  PubMed  Google Scholar 

  2. Perez-Padilla R, Schilmann A, Riojas-Rodriguez H. Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis. 2010;14(9):1079–86. https://www.ncbi.nlm.nih.gov/pubmed/20819250

    CAS  PubMed  Google Scholar 

  3. Garcia-Olive I, Stojanovic Z, Radua J, Rodriguez-Pons L, Martinez-Rivera C, Ruiz Manzano J. Effect of air pollution on exacerbations of bronchiectasis in Badalona, Spain, 2008–2016. Respiration. 2018;96(2):111–6. https://doi.org/10.1159/000488646.

    Article  CAS  PubMed  Google Scholar 

  4. Goeminne PC, Cox B, Finch S, Loebinger MR, Bedi P, Hill AT, Fardon TC, de Hoogh K, Nawrot TS, Chalmers JD. The impact of acute air pollution fluctuations on bronchiectasis pulmonary exacerbation: a case-crossover analysis. Eur Respir J. 2018;52(1):1702557. https://doi.org/10.1183/13993003.02557-2017.

    Article  CAS  PubMed  Google Scholar 

  5. Goss CH, Newsom SA, Schildcrout JS, Sheppard L, Kaufman JD. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med. 2004;169(7):816–21. https://doi.org/10.1164/rccm.200306-779OC.

    Article  PubMed  Google Scholar 

  6. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: systematic review and multilevel meta-analysis. PLoS One. 2017;12(3):e0174050. https://doi.org/10.1371/journal.pone.0174050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, Cancio LC, Chung KK. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015;19:351. https://doi.org/10.1186/s13054-015-1077-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mahut B, Delacourt C, de Blic J, Mani TM, Scheinmann P. Bronchiectasis in a child after acrolein inhalation. Chest. 1993;104(4):1286–7. https://doi.org/10.1378/chest.104.4.1286.

    Article  CAS  PubMed  Google Scholar 

  9. Tasaka S, Kanazawa M, Mori M, Fujishima S, Ishizaka A, Yamasawa F, Kawashiro T. Long-term course of bronchiectasis and bronchiolitis obliterans as late complication of smoke inhalation. Respiration. 1995;62(1):40–2. https://doi.org/10.1159/000196386.

    Article  CAS  PubMed  Google Scholar 

  10. Ruberman W, Shauffer I, Biondo T. Bronchiectasis and acute pneumonia. Am Rev Tuberc. 1957;76(5):761–9. https://doi.org/10.1164/artpd.1957.76.5.761.

    Article  CAS  PubMed  Google Scholar 

  11. Montella S, De Stefano S, Sperli F, Barbarano F, Santamaria F. Increased risk of chronic suppurative lung disease after measles or pertussis in non-vaccinated children. Vaccine. 2007;25(3):402–3. https://doi.org/10.1016/j.vaccine.2006.09.045.

    Article  CAS  PubMed  Google Scholar 

  12. Singleton R, Morris A, Redding G, Poll J, Holck P, Martinez P, Kruse D, Bulkow LR, Petersen KM, Lewis C. Bronchiectasis in Alaska native children: causes and clinical courses. Pediatr Pulmonol. 2000;29(3):182–7. https://doi.org/10.1002/(sici)1099-0496(200003)29:3<182::aid-ppul5>3.0.co;2-t.

    Article  CAS  PubMed  Google Scholar 

  13. Singleton RJ, Valery PC, Morris P, Byrnes CA, Grimwood K, Redding G, Torzillo PJ, McCallum G, Chikoyak L, Mobberly C, Holman RC, Chang AB. Indigenous children from three countries with non-cystic fibrosis chronic suppurative lung disease/bronchiectasis. Pediatr Pulmonol. 2014;49(2):189–200. https://doi.org/10.1002/ppul.22763.

    Article  PubMed  Google Scholar 

  14. Lonni S, Chalmers JD, Goeminne PC, McDonnell MJ, Dimakou K, De Soyza A, Polverino E, Van de Kerkhove C, Rutherford R, Davison J, Rosales E, Pesci A, Restrepo MI, Torres A, Aliberti S. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann Am Thorac Soc. 2015;12(12):1764–70. https://doi.org/10.1513/AnnalsATS.201507-472OC.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chalmers JD, Hill AT. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol Immunol. 2013;55(1):27–34. https://doi.org/10.1016/j.molimm.2012.09.011.

    Article  CAS  PubMed  Google Scholar 

  16. Cullen L, McClean S. Bacterial adaptation during chronic respiratory infections. Pathogens. 2015;4(1):66–89. https://doi.org/10.3390/pathogens4010066.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goeminne PC, Nawrot TS, Ruttens D, Seys S, Dupont LJ. Mortality in non-cystic fibrosis bronchiectasis: a prospective cohort analysis. Respir Med. 2014;108(2):287–96. https://doi.org/10.1016/j.rmed.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  18. McDonnell MJ, Jary HR, Perry A, MacFarlane JG, Hester KL, Small T, Molyneux C, Perry JD, Walton KE, De Soyza A. Non cystic fibrosis bronchiectasis: a longitudinal retrospective observational cohort study of pseudomonas persistence and resistance. Respir Med. 2015;109(6):716–26. https://doi.org/10.1016/j.rmed.2014.07.021.

    Article  PubMed  Google Scholar 

  19. Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc. 2015;12(11):1602–11. https://doi.org/10.1513/AnnalsATS.201506-333OC.

    Article  PubMed  Google Scholar 

  20. Metersky ML, Aksamit TR, Barker A, Choate R, Daley CL, Daniels LA, DiMango A, Eden E, Griffith D, Johnson M, Knowles M, O'Donnell AE, Olivier K, Salathe M, Thomashow B, Tino G, Turino G, Winthrop KL, Mannino D. The prevalence and significance of Staphylococcus aureus in patients with non-cystic fibrosis bronchiectasis. Ann Am Thorac Soc. 2018;15(3):365–70. https://doi.org/10.1513/AnnalsATS.201706-426OC.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marra R, Sgalla G, Richeldi L, Conte EG, Hill AT. Role of Stenotrophomonas maltophilia isolation in patients with non-CF bronchiectasis. QJM. 2020;113(10):726–30. https://doi.org/10.1093/qjmed/hcaa120.

    Article  CAS  PubMed  Google Scholar 

  22. Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, Greene CM, McElvaney NG. Aspergillus-associated airway disease, inflammation, and the innate immune response. Biomed Res Int. 2013;2013:723129. https://doi.org/10.1155/2013/723129.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maiz L, Nieto R, Canton R, Gomez, G. d. l. P. E., & Martinez-Garcia, M. A. Fungi in bronchiectasis: a concise review. Int J Mol Sci. 2018;19(1):142. https://doi.org/10.3390/ijms19010142.

    Article  CAS  PubMed Central  Google Scholar 

  24. Namvar S, Warn P, Farnell E, Bromley M, Fraczek M, Bowyer P, Herrick S. Aspergillus fumigatus proteases, asp f 5 and asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy. 2015;45(5):982–93. https://doi.org/10.1111/cea.12426.

    Article  CAS  PubMed  Google Scholar 

  25. Oguma T, Asano K, Tomomatsu K, Kodama M, Fukunaga K, Shiomi T, Ohmori N, Ueda S, Takihara T, Shiraishi Y, Sayama K, Kagawa S, Natori Y, Lilly CM, Satoh K, Makimura K, Ishizaka A. Induction of mucin and MUC5AC expression by the protease activity of aspergillus fumigatus in airway epithelial cells. J Immunol. 2011;187(2):999–1005. https://doi.org/10.4049/jimmunol.1002257.

    Article  CAS  PubMed  Google Scholar 

  26. Kunst H, Wickremasinghe M, Wells A, Wilson R. Nontuberculous mycobacterial disease and aspergillus-related lung disease in bronchiectasis. Eur Respir J. 2006;28(2):352–7. https://doi.org/10.1183/09031936.06.00139005.

    Article  CAS  PubMed  Google Scholar 

  27. De Soyza A, Aliberti S. Bronchiectasis and aspergillus: how are they linked? Med Mycol. 2017;55(1):69–81. https://doi.org/10.1093/mmy/myw109.

    Article  PubMed  Google Scholar 

  28. Hinson KF, Moon AJ, Plummer NS. Broncho-pulmonary aspergillosis; a review and a report of eight new cases. Thorax. 1952;7(4):317–33. https://doi.org/10.1136/thx.7.4.317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenberg M, Patterson R, Mintzer R, Cooper BJ, Roberts M, Harris KE. Clinical and immunologic criteria for the diagnosis of allergic bronchopulmonary aspergillosis. Ann Intern Med. 1977;86(4):405–14. https://doi.org/10.7326/0003-4819-86-4-405.

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal R, Chakrabarti A, Shah A, Gupta D, Meis JF, Guleria R, Moss R, Denning DW, group, A. c. a. I. w. Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy. 2013;43(8):850–73. https://doi.org/10.1111/cea.12141.

    Article  CAS  PubMed  Google Scholar 

  31. Asano K, Hebisawa A, Ishiguro T, Takayanagi N, Nakamura Y, Suzuki J, Okada N, Tanaka J, Fukutomi Y, Ueki S, Fukunaga K, Konno S, Matsuse H, Kamei K, Taniguchi M, Shimoda T, Oguma T, Japan ARP. New clinical diagnostic criteria for allergic bronchopulmonary aspergillosis/mycosis and its validation. J Allergy Clin Immunol. 2021;147(4):1261–8. e1265. https://doi.org/10.1016/j.jaci.2020.08.029.

    Article  PubMed  Google Scholar 

  32. Geller DE, Kaplowitz H, Light MJ, Colin AA. Allergic bronchopulmonary aspergillosis in cystic fibrosis: reported prevalence, regional distribution, and patient characteristics. Scientific advisory group, investigators, and coordinators of the epidemiologic study of cystic fibrosis. Chest. 1999;116(3):639–46. https://doi.org/10.1378/chest.116.3.639.

    Article  CAS  PubMed  Google Scholar 

  33. Greenberger PA. Allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2002;110(5):685–92. https://doi.org/10.1067/mai.2002.130179.

    Article  PubMed  Google Scholar 

  34. Greenberger PA. When to suspect and work up allergic bronchopulmonary aspergillosis. Ann Allergy Asthma Immunol. 2013;111(1):1–4. https://doi.org/10.1016/j.anai.2013.04.014.

    Article  PubMed  Google Scholar 

  35. Patel AR, Patel AR, Singh S, Singh S, Khawaja I. Treating allergic bronchopulmonary aspergillosis: a review. Cureus. 2019;11(4):e4538. https://doi.org/10.7759/cureus.4538.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol. 2013;51(4):361–70. https://doi.org/10.3109/13693786.2012.738312.

    Article  PubMed  Google Scholar 

  37. Maturu VN, Agarwal R. Prevalence of aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy. 2015;45(12):1765–78. https://doi.org/10.1111/cea.12595.

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan B, Santiago L, Hutcheson PS, Schwartz HJ, Spitznagel E, Castro M, Slavin RG, Bellone CJ. Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2000;106(4):723–9. https://doi.org/10.1067/mai.2000.109913.

    Article  CAS  PubMed  Google Scholar 

  39. Saxena S, Madan T, Shah A, Muralidhar K, Sarma PU. Association of polymorphisms in the collagen region of SP-A2 with increased levels of total IgE antibodies and eosinophilia in patients with allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2003;111(5):1001–7. https://doi.org/10.1067/mai.2003.1395.

    Article  CAS  PubMed  Google Scholar 

  40. Gago S, Overton NLD, Ben-Ghazzi N, Novak-Frazer L, Read ND, Denning DW, Bowyer P. Lung colonization by Aspergillus fumigatus is controlled by ZNF77. Nat Commun. 2018;9(1):3835. https://doi.org/10.1038/s41467-018-06148-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gamaletsou MN, Hayes G, Harris C, Brock J, Muldoon EG, Denning DW. F508del CFTR gene mutation in patients with allergic bronchopulmonary aspergillosis. J Asthma. 2018;55(8):837–43. https://doi.org/10.1080/02770903.2017.1373808.

    Article  CAS  PubMed  Google Scholar 

  42. Marchand E, Verellen-Dumoulin C, Mairesse M, Delaunois L, Brancaleone P, Rahier JF, Vandenplas O. Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 5T allele in patients with allergic bronchopulmonary aspergillosis. Chest. 2001;119(3):762–7. https://doi.org/10.1378/chest.119.3.762.

    Article  CAS  PubMed  Google Scholar 

  43. Ishiguro T, Takayanagi N, Baba Y, Takaku Y, Kagiyama N, Sugita Y. Pulmonary Nontuberculous Mycobacteriosis and chronic lower respiratory tract infections in patients with allergic bronchopulmonary mycosis without cystic fibrosis. Intern Med. 2016;55(9):1067–70. https://doi.org/10.2169/internalmedicine.55.5561.

    Article  PubMed  Google Scholar 

  44. Kumar R, Chopra D. Evaluation of allergic bronchopulmonary aspergillosis in patients with and without central bronchiectasis. J Asthma. 2002;39(6):473–7. https://doi.org/10.1081/jas-120004905.

    Article  PubMed  Google Scholar 

  45. Deepak D, Singh Rajput M, Sharma B, Chowdhary A. Allergic bronchopulmonary mycosis due to fungi other than aspergillus. Eur Ann Allergy Clin Immunol. 2019;51(2):75–9. https://doi.org/10.23822/EurAnnACI.1764-1489.87.

    Article  CAS  PubMed  Google Scholar 

  46. Sehgal IS, Choudhary H, Dhooria S, Aggarwal AN, Bansal S, Garg M, Behera D, Chakrabarti A, Agarwal R. Prevalence of sensitization to aspergillus flavus in patients with allergic bronchopulmonary aspergillosis. Med Mycol. 2019;57(3):270–6. https://doi.org/10.1093/mmy/myy012.

    Article  PubMed  Google Scholar 

  47. Funari M, Kavakama J, Shikanai-Yasuda MA, Castro LG, Bernard G, Rocha MS, Cerri GG, Muller NL. Chronic pulmonary paracoccidioidomycosis (South American blastomycosis): high-resolution CT findings in 41 patients. AJR Am J Roentgenol. 1999;173(1):59–64. https://doi.org/10.2214/ajr.173.1.10397100.

    Article  CAS  PubMed  Google Scholar 

  48. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K, Subcommittee ATSMD, American Thoracic S, Infectious Disease Society of, A. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST.

    Article  CAS  PubMed  Google Scholar 

  49. Metersky, M. L. (2012). Bronchiectasis, an issue of clinics in chest MedicinE. Elsevier Health Sciences. https://play.google.com/store/books/details?id=oln021SOkQMC

    Google Scholar 

  50. Centers for Disease, C., & Prevention. (2019). Nontuberculous Mycobacteria (NTM). https://www.cdc.gov/hai/organisms/ntm/clinicians.html https://www.cdc.gov/hai/organisms/ntm/clinicians.html#:~:text=NTM%20can%20be%20divided%20into,need%20%3E14%20days%20to%20grow

  51. Chalmers J, Polverino E, Aliberti S. Bronchiectasis: the EMBARC manual. Springer; 2017a. https://play.google.com/store/books/details?id=cDxEDwAAQBAJ

    Google Scholar 

  52. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, Verma D, Hill E, Drijkoningen J, Gilligan P, Esther CR, Noone PG, Giddings O, Bell SC, Thomson R, Wainwright CE, Coulter C, Pandey S, Wood ME, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751–7. https://doi.org/10.1126/science.aaf8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections–a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci. 2020;27(1):74. https://doi.org/10.1186/s12929-020-00667-6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, Beylis N, Boeree MJ, Cacho J, Chihota V, Chimara E, Churchyard G, Cias R, Daza R, Daley CL, Dekhuijzen PNR, Domingo D, Drobniewski F, Esteban J, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13. https://doi.org/10.1183/09031936.00149212.

    Article  PubMed  Google Scholar 

  55. Thomson R, Donnan E, Konstantinos A. Notification of Nontuberculous Mycobacteria: an Australian perspective. Ann Am Thorac Soc. 2017;14(3):318–23. https://doi.org/10.1513/AnnalsATS.201612-994OI.

    Article  PubMed  Google Scholar 

  56. Gebert MJ, Delgado-Baquerizo M, Oliverio AM, Webster TM, Nichols LM, Honda JR, Chan ED, Adjemian J, Dunn RR, Fierer N. Ecological analyses of Mycobacteria in showerhead biofilms and their Relevance to human health. MBio. 2018;9(5):e01614. https://doi.org/10.1128/mBio.01614-18.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lipner EM, Knox D, French J, Rudman J, Strong M, Crooks JL. A geospatial epidemiologic analysis of Nontuberculous mycobacterial infection: an ecological study in Colorado. Ann Am Thorac Soc. 2017;14(10):1523–32. https://doi.org/10.1513/AnnalsATS.201701-081OC.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vinnard C, Longworth S, Mezochow A, Patrawalla A, Kreiswirth BN, Hamilton K. Deaths related to Nontuberculous mycobacterial infections in the United States, 1999-2014. Ann Am Thorac Soc. 2016;13(11):1951–5. https://doi.org/10.1513/AnnalsATS.201606-474BC.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Novosad SA, Henkle E, Schafer S, Hedberg K, Ku J, Siegel SAR, Choi D, Slatore CG, Winthrop KL. Mortality after respiratory isolation of Nontuberculous Mycobacteria. A comparison of patients who did and did not meet disease criteria. Ann Am Thorac Soc. 2017;14(7):1112–9. https://doi.org/10.1513/AnnalsATS.201610-800OC.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fleshner M, Olivier KN, Shaw PA, Adjemian J, Strollo S, Claypool RJ, Folio L, Zelazny A, Holland SM, Prevots DR. Mortality among patients with pulmonary non-tuberculous mycobacteria disease. Int J Tuberc Lung Dis. 2016;20(5):582–7. https://doi.org/10.5588/ijtld.15.0807.

    Article  CAS  PubMed  Google Scholar 

  61. Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary Nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64. https://doi.org/10.1513/AnnalsATS.201503-173OC.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr, Andrejak C, Böttger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis. 2020;71(4):e1–e36. https://doi.org/10.1093/cid/ciaa241.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med. 2015;36(1):1–11. https://doi.org/10.1016/j.ccm.2014.10.001.

    Article  PubMed  Google Scholar 

  64. Chatterjee D, Khoo KH. The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci. 2001;58(14):2018–42. https://doi.org/10.1007/PL00000834.

    Article  CAS  PubMed  Google Scholar 

  65. Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol. 2006;72(12):7554–8. https://doi.org/10.1128/AEM.01633-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barrow WW, de Sousa JP, Davis TL, Wright EL, Bachelet M, Rastogi N. Immunomodulation of human peripheral blood mononuclear cell functions by defined lipid fractions of Mycobacterium avium. Infect Immun. 1993;61(12):5286–93. https://doi.org/10.1128/iai.61.12.5286-5293.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pourshafie, Pourshafie, Sonnenfeld, & Barrow. Immunological and ultrastructural disruptions of T lymphocytes following exposure to the Glycopeptidolipid isolated from the Mycobacterium avium complex. Scand J Immunol. 1999;49(4):405–10. https://doi.org/10.1046/j.1365-3083.1999.00529.x.

    Article  PubMed  Google Scholar 

  68. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, Bell SC, Thomson RM, Miles JJ. The rise of non-tuberculosis mycobacterial Lung disease. Front Immunol. 2020;11:303. https://doi.org/10.3389/fimmu.2020.00303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu U-I, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 2015;15(8):968–80. https://doi.org/10.1016/S1473-3099(15)00089-4.

    Article  CAS  PubMed  Google Scholar 

  70. Lee T, Park JY, Lee HY, Lim HJ, Park JS, Cho YJ, Kim TJ, Lee KW, Lee JH, Lee CT, Yoon HI. Bronchial angles are associated with nodular bronchiectatic non-tuberculous mycobacteria lung disease. Int J Tuberc Lung Dis. 2017;21(10):1169–75. https://doi.org/10.5588/ijtld.16.0865.

    Article  CAS  PubMed  Google Scholar 

  71. Winthrop KL, Chang E, Yamashita S, Iademarco MF, LoBue PA. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg Infect Dis. 2009;15(10):1556–61. https://doi.org/10.3201/eid1510.090310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chalmers JD, Moffitt KL, Suarez-Cuartin G, Sibila O, Finch S, Furrie E, Dicker A, Wrobel K, Elborn JS, Walker B, Martin SL, Marshall SE, Huang JTJ, Fardon TC. Neutrophil elastase activity is associated with exacerbations and Lung function decline in bronchiectasis. Am J Respir Crit Care Med. 2017b;195(10):1384–93. https://doi.org/10.1164/rccm.201605-1027OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsang KW, Chan K, Ho P, Zheng L, Ooi GC, Ho JC, Lam W. Sputum elastase in steady-state bronchiectasis. Chest. 2000;117(2):420–6. https://doi.org/10.1378/chest.117.2.420.

    Article  CAS  PubMed  Google Scholar 

  74. Griffith DE. Nontuberculous mycobacterial disease research. An end to the beginning. Am J Respir Crit Care Med. 2015;192(5):535–7. https://doi.org/10.1164/rccm.201506-1090ED.

    Article  PubMed  Google Scholar 

  75. Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern: the Lady Windermere syndrome. Case Rep. 1992;101:1605. https://go.gale.com/ps/retrieve.do?tabID=T002&resultListType=RESULT_LIST&searchResultsType=SingleTab&hitCount=1&searchType=AdvancedSearchForm&currentPosition=1&docId=GALE%7CA12407490&docType=Article&sort=RELEVANCE&contentSegment=ZONE-MOD1&prodId=AONE&pageNum=1&contentSet=GALE%7CA12407490&searchId=R1&userGroupName=vol_b92b&inPS=true

    CAS  Google Scholar 

  76. Szymanski EP, Leung JM, Fowler CJ, Haney C, Hsu AP, Chen F, Duggal P, Oler AJ, McCormack R, Podack E, Drummond RA, Lionakis MS, Browne SK, Prevots DR, Knowles M, Cutting G, Liu X, Devine SE, Fraser CM, et al. Pulmonary Nontuberculous mycobacterial infection. A multisystem, multigenic disease. Am J Respir Crit Care Med. 2015;192(5):618–28. https://doi.org/10.1164/rccm.201502-0387OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Daley CL. Mycobacterium avium complex disease. Microbiol Spectr. 2017;5:2. https://doi.org/10.1128/microbiolspec.TNMI7-0045-2017.

    Article  Google Scholar 

  78. Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191(11):1310–7. https://doi.org/10.1164/rccm.201501-0067OC.

    Article  CAS  PubMed  Google Scholar 

  79. Koh WJ, Jeong BH, Jeon K, Lee NY, Lee KS, Woo SY, Shin SJ, Kwon OJ. Clinical significance of the differentiation between Mycobacterium avium and mycobacterium intracellulare in M avium complex lung disease. Chest. 2012;142(6):1482–8. https://doi.org/10.1378/chest.12-0494.

    Article  PubMed  Google Scholar 

  80. Timpe A, Runyon EH. The relationship of “atypical” acid-fast bacteria to human disease: a preliminary report. J Lab Clin Med. 1954;44(2):202–9. https://doi.org/10.5555/uri:pii:0022214354902103.

    Article  CAS  PubMed  Google Scholar 

  81. Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, Figueroa WG, Fish JE. Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med. 1989;321(13):863–8. https://doi.org/10.1056/NEJM198909283211304.

    Article  CAS  PubMed  Google Scholar 

  82. Lee G, Lee KS, Moon JW, Koh W-J, Jeong B-H, Jeong YJ, Kim HJ, Woo S. Nodular Bronchiectatic Mycobacterium avium complex pulmonary disease. Natural course on serial computed tomographic scans. Ann Am Thorac Soc. 2013;10(4):299–306. https://doi.org/10.1513/annalsats.201303-062oc.

    Article  PubMed  Google Scholar 

  83. Yamazaki Y, Kubo K, Takamizawa A, Yamamoto H, Honda T, Sone S. Markers indicating deterioration of pulmonary Mycobacterium avium-intracellulare infection. Am J Respir Crit Care Med. 1999;160(6):1851–5. https://doi.org/10.1164/ajrccm.160.6.9902019.

    Article  CAS  PubMed  Google Scholar 

  84. Griffith DE. Mycobacterium abscessus subsp abscessus lung disease: 'trouble ahead, trouble behind…. F1000Prime Rep. 2014;6:107. https://doi.org/10.12703/P6-107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Esther CR Jr, Esserman DA, Gilligan P, Kerr A, Noone PG. Chronic mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros. 2010;9(2):117–23. https://doi.org/10.1016/j.jcf.2009.12.001.

    Article  PubMed  Google Scholar 

  86. Qvist T, Taylor-Robinson D, Waldmann E, Olesen HV, Hansen CR, Mathiesen IH, Høiby N, Katzenstein TL, Smyth RL, Diggle PJ, Pressler T. Comparing the harmful effects of nontuberculous mycobacteria and gram negative bacteria on lung function in patients with cystic fibrosis. J Cyst Fibros. 2016;15(3):380–5. https://doi.org/10.1016/j.jcf.2015.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for mycobacterium abscessus pulmonary disease. Clin Infect Dis. 2011;52(5):565–71. https://doi.org/10.1093/cid/ciq237.

    Article  PubMed  Google Scholar 

  88. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012;67(4):810–8. https://doi.org/10.1093/jac/dkr578.

    Article  CAS  PubMed  Google Scholar 

  89. Moon SM, Park HY, Kim S-Y, Jhun BW, Lee H, Jeon K, Kim DH, Huh HJ, Ki C-S, Lee NY, Kim HK, Choi YS, Kim J, Lee S-H, Kim CK, Shin SJ, Daley CL, Koh W-J. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(11):6758–65. https://doi.org/10.1128/AAC.01240-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. Whole-genome sequencing to identify transmission of mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60. https://doi.org/10.1016/S0140-6736(13)60632-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Conway DJ. A congenital factor in bronchiectasis. Arch Dis Child. 1951;26(127):253–7. https://doi.org/10.1136/adc.26.127.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hai LT, Thach HN, Tuan TA, Nam DH, Dien TM, Sato Y, Kumasaka T, Suzuki T, Hanaoka N, Fujimoto T, Katano H, Hasegawa H, Kawachi S, Nakajima N. Adenovirus type 7 pneumonia in children who died from measles-associated pneumonia, Hanoi, Vietnam, 2014. Emerg Infect Dis. 2016;22(4):687–90. https://doi.org/10.3201/eid2204.151595.

    Article  CAS  PubMed Central  Google Scholar 

  93. van Zyl Smit RN, Pai M, Yew WW, Leung CC, Zumla A, Bateman ED, Dheda K. Global lung health: the colliding epidemics of tuberculosis, tobacco smoking, HIV and COPD. Eur Respir J. 2010;35(1):27–33. https://doi.org/10.1183/09031936.00072909.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Warner JO, Marshall WC. Crippling lung disease after measles and adenovirus infection. Br J Dis Chest. 1976;70(2):89–94. https://doi.org/10.1016/0007-0971(76)90012-7.

    Article  CAS  PubMed  Google Scholar 

  95. Schoini P, Karampitsakos T, Avdikou M, Athanasopoulou A, Tsoukalas G, Tzouvelekis A. Measles pneumonitis. Adv Respir Med. 2019;87(1):63–7. https://doi.org/10.5603/ARM.a2019.0010.

    Article  PubMed  Google Scholar 

  96. Cdc. (2021). History of measles. https://www.cdc.gov/measles/about/history.html

  97. Cdcglobal. (2021). Global measles outbreaks. https://www.cdc.gov/globalhealth/measles/data/global-measles-outbreaks.html

  98. Beckford AP, Kaschula RO, Stephen C. Factors associated with fatal cases of measles. A retrospective autopsy study. S Afr Med J. 1985;68(12):858–63. https://www.ncbi.nlm.nih.gov/pubmed/3877996 https://pubmed.ncbi.nlm.nih.gov/3877996

    CAS  PubMed  Google Scholar 

  99. Kipps A, Kaschula RO. Virus peneumonia following measles: a virological and histological study of autopsy material. S Afr Med J. 1976;50(28):1083–8. https://www.ncbi.nlm.nih.gov/pubmed/183294; https://pubmed.ncbi.nlm.nih.gov/183294

    CAS  PubMed  Google Scholar 

  100. Quiambao BP, Gatchalian SR, Halonen P, Lucero M, Sombrero L, Paladin FJ, Meurman O, Merin J, Ruutu P. Coinfection is common in measles-associated pneumonia. Pediatr Infect Dis J. 1998;17(2):89–93. https://doi.org/10.1097/00006454-199802000-00002.

    Article  CAS  PubMed  Google Scholar 

  101. Jean R, Benoist MR, Rufin P, Meyer B, Scheinmann P, Paupe J. Respiratory sequelae of severe measles (author’s transl). Rev Fr Mal Respir. 1981;9(1):45–53. https://www.ncbi.nlm.nih.gov/pubmed/7330429

    CAS  PubMed  Google Scholar 

  102. Chau S-K, Lee S-L, Peiris MJS, Chan K-H, Chan E, Wong W, Chiu SS. Adenovirus respiratory infection in hospitalized children in Hong Kong: serotype-clinical syndrome association and risk factors for lower respiratory tract infection. Eur J Pediatr. 2013;173(3):291–301. https://doi.org/10.1007/s00431-013-2127-z.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Massie R, Armstrong D. Bronchiectasis and bronchiolitis obliterans post respiratory syncytial virus infection: think again. J Paediatr Child Health. 1999;35(5):497–8. https://doi.org/10.1046/j.1440-1754.1999.355369.x.

    Article  CAS  PubMed  Google Scholar 

  104. Hogg JC, Irving WL, Porter H, Evans M, Dunnill MS, Fleming K. In situ hybridization studies of adenoviral infections of the lung and their relationship to follicular bronchiectasis. Am Rev Respir Dis. 1989;139(6):1531–5. https://doi.org/10.1164/ajrccm/139.6.1531.

    Article  CAS  PubMed  Google Scholar 

  105. Díaz PV, Calhoun WJ, Hinton KL, Avendaño LF, Gaggero A, Simon V, Arredondo SM, Pinto R, Díaz A. Differential effects of respiratory syncytial virus and adenovirus on mononuclear cell cytokine responses. Am J Respir Crit Care Med. 1999;160(4):1157–64. https://doi.org/10.1164/ajrccm.160.4.9804075.

    Article  PubMed  Google Scholar 

  106. Wurzel DF, Mackay IM, Marchant JM, Wang CYT, Yerkovich ST, Upham JW, Smith-Vaughan HC, Petsky HL, Chang AB. Adenovirus species C is associated with chronic suppurative lung diseases in children. Clin Infect Dis. 2014;59(1):34–40. https://doi.org/10.1093/cid/ciu225.

    Article  CAS  PubMed  Google Scholar 

  107. Similä S, Linna O, Lanning P, Heikkinen E, Ala-Houhala M. Chronic lung damage caused by adenovirus type 7: a ten-year follow-up study. Chest. 1981;80(2):127–31. https://doi.org/10.1378/chest.80.2.127.

    Article  PubMed  Google Scholar 

  108. Einsiedel L, Pham H, Talukder MRR, Liddle J, Taylor K, Wilson K, Jersmann H, Gessain A, Woodman R, Kaldor J. Pulmonary disease is associated with human T-cell leukemia virus type 1c infection: a cross-sectional survey in remote aboriginal communities. Clin Infect Dis. 2021;73(7):e1498–506. https://doi.org/10.1093/cid/ciaa1401.

    Article  CAS  PubMed  Google Scholar 

  109. Gonçalves DU, Proietti FA, Ribas JGR, Araújo MG, Pinheiro SR, Guedes AC, Carneiro-Proietti ABF. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev. 2010;23(3):577–89. https://doi.org/10.1128/CMR.00063-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Einsiedel L, Cassar O, Goeman E, Spelman T, Au V, Hatami S, Joseph S, Gessain A. Higher human T-lymphotropic virus type 1 subtype C proviral loads are associated with bronchiectasis in indigenous Australians: results of a case-control study. Open Forum Infect Dis. 2014;1(1):ofu023. https://doi.org/10.1093/ofid/ofu023.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Einsiedel L, Fernandes L, Spelman T, Steinfort D, Gotuzzo E. Bronchiectasis is associated with human T-lymphotropic virus 1 infection in an indigenous Australian population. Clin Infect Dis. 2011;54(1):43–50. https://doi.org/10.1093/cid/cir766.

    Article  PubMed  Google Scholar 

  112. Einsiedel L, Pham H, Au V, Hatami S, Wilson K, Spelman T, Jersmann H. Predictors of non-cystic fibrosis bronchiectasis in indigenous adult residents of Central Australia: results of a case-control study. ERJ Open Res. 2019;5(4):00001–2019. https://doi.org/10.1183/23120541.00001-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Matsuse T, Fukuchi Y, Hsu CY, Nagase T, Higashimoto N, Teramoto S, Matsui H, Sudo E, Kida K, Morinari H, Fukayama M, Ouchi Y, Orimo H. Detection of human T lymphotropic virus type I proviral DNA in patients with diffuse panbronchiolitis. Respirology. 1996;1(2):139–44. https://doi.org/10.1111/j.1440-1843.1996.tb00023.x.

    Article  CAS  PubMed  Google Scholar 

  114. Okada F, Ando Y, Yoshitake S, Yotsumoto S, Matsumoto S, Wakisaka M, Maeda T, Mori H. Pulmonary CT findings in 320 carriers of human T-lymphotropic virus type 1. Radiology. 2006;240(2):559–64. https://doi.org/10.1148/radiol.2402050886.

    Article  PubMed  Google Scholar 

  115. Drummond MB, Kirk GD. HIV-associated obstructive lung diseases: insights and implications for the clinician. Lancet Respir Med. 2014;2(7):583–92. https://doi.org/10.1016/S2213-2600(14)70017-7.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Holmes AH, Pelton S, Steinbach S, Luzzi GA. HIV related bronchiectasis. Thorax. 1995;50(11):1227. https://doi.org/10.1136/thx.50.11.1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holmes AH, Trotman-Dickenson B, Edwards A, Peto T, Luzzi GA. Bronchiectasis in HIV disease. Q J Med. 1992;85(307–308):875–82. https://www.ncbi.nlm.nih.gov/pubmed/1484949; https://academic.oup.com/qjmed/article-abstract/85/2-3/875/1600203; http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1024.5536&rep=rep1&type=pdf

    CAS  PubMed  Google Scholar 

  118. McGuinness G, Naidich DP, Garay S, Leitman BS, McCauley DI. AIDS associated bronchiectasis: CT features. J Comput Assist Tomogr. 1993;17(2):260–6. https://doi.org/10.1097/00004728-199303000-00015.

    Article  CAS  PubMed  Google Scholar 

  119. Verghese A, al-Samman M, Nabhan D, Naylor AD, Rivera M. Bacterial bronchitis and bronchiectasis in human immunodeficiency virus infection. Arch Intern Med. 1994;154(18):2086–91. https://www.ncbi.nlm.nih.gov/pubmed/8092913

    Article  CAS  Google Scholar 

  120. Berman DM, Mafut D, Djokic B, Scott G, Mitchell C. Risk factors for the development of bronchiectasis in HIV-infected children. Pediatr Pulmonol. 2007;42(10):871–5. https://doi.org/10.1002/ppul.20668.

    Article  PubMed  Google Scholar 

  121. Sheikh S, Madiraju K, Steiner P, Rao M. Bronchiectasis in pediatric AIDS. Chest. 1997;112(5):1202–7. https://doi.org/10.1378/chest.112.5.1202.

    Article  CAS  PubMed  Google Scholar 

  122. Petrache I, Diab K, Knox KS, Twigg HL 3rd, Stephens RS, Flores S, Tuder RM. HIV associated pulmonary emphysema: a review of the literature and inquiry into its mechanism. Thorax. 2008;63(5):463–9. https://doi.org/10.1136/thx.2007.079111.

    Article  CAS  PubMed  Google Scholar 

  123. Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep. 2021;11(1):3988. https://doi.org/10.1038/s41598-021-82143-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chung NPY, Ou X, Khan KMF, Salit J, Kaner RJ, Crystal RG. HIV reprograms human airway basal stem/progenitor cells to acquire a tissue-destructive phenotype. Cell Rep. 2017;19(6):1091–100. https://doi.org/10.1016/j.celrep.2017.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen C-L, Huang Y, Martinez-Garcia MA, Yuan J-J, Li H-M, de la Rosa-Carrillo D, Han X-R, Chen R-C, Guan W-J, Zhong N-S. The role of Epstein-Barr virus in adults with bronchiectasis: a prospective cohort study. Open Forum Infect Dis. 2020;7(8):ofaa235. https://doi.org/10.1093/ofid/ofaa235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marsh RA. Epstein–Barr virus and Hemophagocytic Lymphohistiocytosis. Front Immunol. 2018;8:1902. https://doi.org/10.3389/fimmu.2017.01902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pinzone MR, Berretta M, Cacopardo B, Nunnari G. Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin Oncol. 2015;42(2):258–71. https://doi.org/10.1053/j.seminoncol.2014.12.026.

    Article  PubMed  Google Scholar 

  128. Lung ML, Lam WK, So SY, Lam WP, Chan KH, Ng MH. Evidence that respiratory tract is major reservoir for Epstein-Barr virus. Lancet. 1985;1(8434):889–92. https://doi.org/10.1016/s0140-6736(85)91671-x.

    Article  CAS  PubMed  Google Scholar 

  129. McManus TE, Marley AM, Baxter N, Christie SN, Elborn JS, O'Neill HJ, Coyle PV, Kidney JC. High levels of Epstein–Barr virus in COPD. Eur Respir J. 2008;31(6):1221–6. https://doi.org/10.1183/09031936.00107507.

    Article  CAS  PubMed  Google Scholar 

  130. Stewart JP, Egan JJ, Ross AJ, Kelly BG, Lok SS, Hasleton PS, Woodcock AA. The detection of Epstein-Barr virus DNA in Lung tissue from patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1999;159(4):1336–41. https://doi.org/10.1164/ajrccm.159.4.9807077.

    Article  CAS  PubMed  Google Scholar 

  131. Laraya-Cuasay LR, DeForest A, Huff D, Lischner H, Huang NN. Chronic pulmonary complications of early influenza virus infection in children. Am Rev Respir Dis. 1977;116(4):617–25. https://doi.org/10.1164/arrd.1977.116.4.617.

    Article  CAS  PubMed  Google Scholar 

  132. Cdc. (2020). 2009 H1N1 pandemic (H1N1pdm09 virus). https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html

  133. Keeler SP, Agapov EV, Hinojosa ME, Letvin AN, Wu K, Holtzman MJ. Influenza A virus infection causes chronic Lung disease linked to sites of active viral RNA remnants. J Immunol. 2018;201(8):2354–68. https://doi.org/10.4049/jimmunol.1800671.

    Article  CAS  PubMed  Google Scholar 

  134. Pang G, Clancy R, Cong M, Ortega M, Zhigang R, Reeves G. Influenza virus inhibits lysozyme secretion by sputum neutrophils in subjects with chronic bronchial sepsis. Am J Respir Crit Care Med. 2000;161(3 Pt 1):718–22. https://doi.org/10.1164/ajrccm.161.3.9812047.

    Article  CAS  PubMed  Google Scholar 

  135. Smith MW, Schmidt JE, Rehg JE, Orihuela CJ, McCullers JA. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med. 2007;57(1):82–9. https://www.ncbi.nlm.nih.gov/pubmed/17348295

    CAS  PubMed  Google Scholar 

  136. van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM, Florquin S, Goldman M, Jansen HM, Lutter R, van der Poll T. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol. 2004;172(12):7603–9. https://www.ncbi.nlm.nih.gov/pubmed/15187140

    Article  Google Scholar 

  137. Xing Z-H, Sun X, Xu L, Wu Q, Li L, Wu X-J, Shao X-G, Zhao X-Q, Wang J-H, Ma L-Y, Wang K. Thin-section computed tomography detects long-term pulmonary sequelae 3 years after novel influenza A virus-associated pneumonia. Chin Med J. 2015;128(7):902–8. https://doi.org/10.4103/0366-6999.154285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luyt C-E, Combes A, Becquemin M-H, Beigelman-Aubry C, Hatem S, Brun A-L, Zraik N, Carrat F, Grenier PA, Richard J-CM, Mercat A, Brochard L, Brun-Buisson C, Chastre J. Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest. 2012;142(3):583–92. https://doi.org/10.1378/chest.11-2196.

    Article  CAS  PubMed  Google Scholar 

  139. Gao Y-H, Guan W-J, Xu G, Lin Z-Y, Tang Y, Lin Z-M, Gao Y, Li H-M, Zhong N-S, Zhang G-J, Chen R-C. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Chest. 2015;147(6):1635–43. https://doi.org/10.1378/chest.14-1961.

    Article  PubMed  Google Scholar 

  140. Park YE, Sung H, Oh Y-M. Respiratory viruses in acute exacerbations of bronchiectasis. J Korean Med Sci. 2021;36(34):e217. https://doi.org/10.3346/jkms.2021.36.e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. COVID-19 Map–Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html

  142. Singh AK, Kumar OP, Bansal P, Margekar SL, Aggarwal R, Ghotekar LR, Gupta A. Post-COVID interstitial Lung disease–the looming epidemic. J Assoc Physicians India. 2021;69(7):11–2. https://www.ncbi.nlm.nih.gov/pubmed/34431265

    PubMed  Google Scholar 

  143. Zou J-N, Sun L, Wang B-R, Zou Y, Xu S, Ding Y-J, Shen L-J, Huang W-C, Jiang X-J, Chen S-M. The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PLoS One. 2021;16(3):e0248957. https://doi.org/10.1371/journal.pone.0248957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martinez-Garcia MA, Aksamit TR, Aliberti S. Bronchiectasis as a long-term consequence of SARS-COVID-19 pneumonia: future studies are needed. Arch Bronconeumol. 2021; https://doi.org/10.1016/j.arbres.2021.04.021.

  145. Ambrosetti MC, Battocchio G, Zamboni GA, Fava C, Tacconelli E, Mansueto G. Rapid onset of bronchiectasis in COVID-19 pneumonia: two cases studied with CT. Radiol Case Rep. 2020;15(11):2098–103. https://doi.org/10.1016/j.radcr.2020.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte C. Teneback .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carbajal, M., Teneback, C.C. (2022). Environmental and Infectious Causes of Bronchiectasis. In: Teneback, C.C., Garcia, B. (eds) Bronchiectasis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-031-12926-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12926-1_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-12925-4

  • Online ISBN: 978-3-031-12926-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics