Skip to main content

Part of the book series: Research for Development ((REDE))

  • 114 Accesses

Abstract

Structures of architectural heritage have inevitably suffered damage with time, and this is particularly true for vaults and domes. Earthquakes, soil settlements, material degradation and lack of maintenance are the main reasons for that. With Sustainable Development Goal 11 (SDG 11), countries have pledged to “make cities and human settlements inclusive, safe, resilient and sustainable”. Within this goal, Target 11.4 aims to “strengthen efforts to protect and safeguard the world’s cultural heritage”. In Europe, inside cathedrals, churches in general, common buildings, castles, towers and palaces the role played by curved masonry and wood structures, in the form of arches, vaults and domes are among the most well recognized. Arches are also very common and of major importance in Roman and Medieval bridges, as well as in aqueducts. The evolution from trilithons to arches, passing through corbel vaults was a Roman intuition; the further refinement of the idea, achieved in the Middle Age and Renaissance, to conceive structures resistant thanks to their geometry led in Europe to build double curvature structures and domes with impressive artistic value. There is an imperative need to ensure that these outstanding structures continue to be an integral part of local life, given the increasing level of support and expertise required to maintain them at a time when the limited resources in communities are becoming ever more stretched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Audenaert A, Fanning P, Sobczak L, Peremans H (2008) 2-D analysis of arch bridges using an elasto-plastic material model. Eng Struct 30:845–855

    Article  Google Scholar 

  • Belidor BF (1729) La science des ingénieurs dans la conduit des travaux de fortification et d’architecture civile, Paris

    Google Scholar 

  • Benvenuto E (1991) An Introduction to the history of structural mechanics, Part II. Vaulted structures and elastic systems. Springer, N.Y

    Google Scholar 

  • Boothby T (1995) Collapse modes of masonry arch bridges. J Brit Mason Soc 9(2):62–69

    Google Scholar 

  • Cavicchi A, Gambarotta L (2005) Collapse analysis of masonry bridges taking into account arch-fill interaction. Eng Struct 27(4):605–615

    Article  Google Scholar 

  • Cavicchi A, Gambarotta L (2006) Two-dimensional finite element upper bound limit analysis of masonry bridges. Comput Struct 84(31–32):2316–2328

    Article  Google Scholar 

  • Chiozzi A, Milani G, Tralli A (2017) A Genetic algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Comput Struct 182:187–204

    Article  Google Scholar 

  • Chiozzi A, Grillanda N, Milani G, Tralli A (2020) Limit analysis of masonry arch bridges through an adaptive GA-NURBS upper-bound approach. Int J Mason Res Inno 5(4):538–552

    Article  Google Scholar 

  • Como M (2013) Statics of historic masonry constructions. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Coulomb CA (1773) Sur une application des Régles de maximis et minimis à quelques problems de statique relatives à l’architecture. Mém. Acad. Sci. Savants Etrangers, Paris, vol VII

    Google Scholar 

  • D’Altri AM, de Miranda S, Castellazzi G, Sarhosis V, Theodossopoulos D (2019) Historic barrel vaults undergoing differential settlements. J Cult Herit 14(8):1196–1209. https://doi.org/10.1080/15583058.2019.1596332

    Article  Google Scholar 

  • Dais D, Bal IE, Smyrou E, Sarhosis V (2021) Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom Constr 125:103606. https://doi.org/10.1016/j.autcon.2021.103606

    Article  Google Scholar 

  • De la Hire P (1712) Sur la Construction des voutes dans les édifices. Mémoires de l’Académie Royale des Sciences, Paris

    Google Scholar 

  • Del Piero G (1998) Limit analysis and no-tension materials. Int J Plasticity 14(1–3):259–271

    Article  MATH  Google Scholar 

  • Dhanasekar M, Page AW, Kleeman PW (1985) The failure of brick masonry under biaxial stresses. Proc Instn Civ Engrs Part 2(79, June):295–313

    Google Scholar 

  • Di Pasquale S (1992) New trends in the analysis of masonry structures. Meccanica 27:173–184

    Article  MATH  Google Scholar 

  • Ferris MC, Tin-Loi F (2001) Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int J Mech Sci 43:209–224

    Article  MATH  Google Scholar 

  • Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140:317–336. https://doi.org/10.1016/j.engstruct.2017.02.036

    Article  Google Scholar 

  • Forgács T, Sarhosis V, Bagi K (2018) Influence of construction method on the load bearing capacity of skew masonry arches. Eng Struct 168:612–627. https://doi.org/10.1016/j.engstruct.2018.05.005

    Article  Google Scholar 

  • Forgács T, Sarhosis V, Adany S (2021) Shakedown and dynamic analysis of railway masonry arch bridges. Eng Struct:111474.https://doi.org/10.1016/j.engstruct.2020.111474

  • Gilbert M (2001) Ring: a 2D rigid block analysis program for masonry arch bridges. In: Proceedings 3rd international arch bridges conference, Paris, France, pp 109–118

    Google Scholar 

  • Gilbert M, Casapulla C, Ahmed HM (2006) Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Comput Struct 84:873–887

    Article  Google Scholar 

  • Grillanda N, Chiozzi A, Milani G, Tralli A (2020) Efficient meta-heuristic mesh adaptation strategies for NURBS upper–bound limit analysis of curved three-dimensional masonry structures. Comp Struct 236:106271

    Google Scholar 

  • Heyman J (1966) The stone skeleton. Int. Journ. Solids Structures 2:249

    Article  Google Scholar 

  • Heyman J (1969) The safety of masonry arches. Int J Mech Sci 43:209–224

    Google Scholar 

  • Heyman J (1972) Coulomb’s memoir on statics. Cambridge Univ, Press

    MATH  Google Scholar 

  • Heyman J (1977) Equilibrium of shell structures. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Heyman J (1982) The masonry arch. Cambridge Press, Cambridge

    Google Scholar 

  • Heyman J (1997) The stone skeleton. Cambridge Univ, Press

    Google Scholar 

  • Hooke R (1675) A description of helioscopes, and some other instruments. John & Martin Printer to the Royal Society, London

    Google Scholar 

  • Huerta S (2001) Mechanics of masonry vaults: the equilibrium approach. In: Lourenço PB, Roca P (eds) Proceedings historical constructions, Guimarães PT

    Google Scholar 

  • Kassotakis N, Sarhosis V (2021) Employing non-contact sensing techniques for improving efficiency and automation in numerical modelling of existing masonry structures: a critical literature review. Structures 32:1777–1797. https://doi.org/10.1016/j.istruc.2021.03.111

    Article  Google Scholar 

  • Kooharian A (1952) Limit analysis of voussoirs (segmental) and concrete arches. J Am Concr Inst 24(4):317–328

    Google Scholar 

  • Loverdos D, Sarhosis V, Adamopoulos E, Drougkas A (2021) An innovative image processing-based framework for the numerical modelling of cracked masonry structures. Autom Constr 125:103633. https://doi.org/10.1016/j.autcon.2021.103633

    Article  Google Scholar 

  • Marcolongo R (1937) Studi vinciani, Naples, vol 7

    Google Scholar 

  • Mascheroni L (1785) Nuove ricerche sull’equilibrio delle volte. Locatelli, Bergamo, pp 25–54

    Google Scholar 

  • Mery E (1840) Sur l’equilibre des voutes en berceau. Annales des Ponts et Chaussées, Paris

    Google Scholar 

  • Milani G (2015) Upper bound sequential linear programming mesh adaptation scheme for collapse analysis of masonry vaults. Adv Eng Softw 79:91–110

    Article  Google Scholar 

  • Milani G, Lourenço PB (2012) 3D non-linear behavior of masonry arch bridges. Comput Struct 110–111:133–150

    Article  Google Scholar 

  • Milani G, Lourenço PB, Tralli A (2006a) Homogenised limit analysis of masonry walls, Part I: failure surfaces. Comput Struct 84:166–180

    Article  Google Scholar 

  • Milani G, Lourenço PB, Tralli A (2006b) Homogenised limit analysis of masonry walls, Part II: structural examples. Comput Struct 84(3–4):181–195

    Article  Google Scholar 

  • Milani G, Milani E, Tralli A (2009) Upper bound limit analysis model for FRP-reinforced masonry curved structures. Part I: unreinforced masonry failure surfaces. Comp Struct 87(23–24):1516–1533

    Google Scholar 

  • Navier CLH (1826). Résumé des Leçons données à l'École Royale des Ponts et Chaussées sur l'Application de la Mécanique à l'Etablissement des Constructions et des Machines. 1ère partie: Leçons sur la résistance des materiaux et sur l'établissement des constructions en terre, en maçonnerie et en charpente, Paris

    Google Scholar 

  • Page AW (1981) The biaxial compressive strength of brick masonry. Proc Instn Civ Engrs Part 2(71, Sept):893–906

    Google Scholar 

  • Pippard AJS (1948) The approximate estimation of safe loads on masonry bridges. Civil Eng War: Inst Civ Eng 1:365

    Google Scholar 

  • Poleni G (1748) Memorie istoriche della gran cupola del tempio vaticano e de’ danni di essa, e de’ ristoramenti loro. Padova 1748. Ristampa della Biblioteca Facoltà di Arch. Univ. di Roma La Sapienza, Rome (1988)

    Google Scholar 

  • Poncelet JV (1852) Examen critique et historique des principales théories ou solutions concernant l’équilibre des voutes. Comptes Rendus 35

    Google Scholar 

  • Radenkovic D (1961) Théorèmes limites pour un materiau de Coulomb a dilatation non standardise. Comptes Rendue Académie Sciences Paris 252:4103–4104

    MathSciNet  MATH  Google Scholar 

  • Salençon J (1977) Application of the theory of plasticity in soil mechanics. John Wiley & Sons (USA)

    Google Scholar 

  • Sarhosis V, Oliveira DV, Lemos JV, Lourenco P (2014) The effect of the angle of skew on the mechanical behaviour of arches. Mech Res Commun 61:49–53. https://doi.org/10.1016/j.mechrescom.2014.07.008

    Article  Google Scholar 

  • Sarhosis V, De Santis S, De Felice G (2016) A review of experimental investigations and assessment methods for masonry arch bridges. J Struct Infrastruct Eng 12(11):1439–1464. https://doi.org/10.1080/15732479.2015.1136655

    Article  Google Scholar 

  • Sarhosis V, Forgács T, Lemos JV (2019) A discrete approach for modelling backfill material in masonry arch bridges. Comput Struct 224:106–118. https://doi.org/10.1016/j.compstruc.2019.106108

    Article  Google Scholar 

  • Sarhosis V, Forgács T, Lemos JV (2020) Stochastic strength prediction of masonry structures: a methodological approach or a way forward? RILEM Tech Lett 40:122–129. https://doi.org/10.21809/rilemtechlett.2019.100

    Article  Google Scholar 

  • Schueremans L, Van Genechten B (2009) The use of 3D-laser scanning in assessing the safety of masonry vaults: a case study on the church of Saint-Jacobs. Optics Lasers Eng. 47:329–335

    Article  Google Scholar 

  • Stockdale GL, Sarhosis V, Milani G (2020) Seismic capacity and multi-mechanism analysis for dry-stack masonry arches subjected to hinge control. Bull Earthq Eng:673–724.https://doi.org/10.1007/s10518-019-00583-7

  • Tralli A, Chiozzi A, Grillanda N, Milani G (2020) Masonry structures in the presence of foundation settlements and unilateral contact problems. Int J Solids Struct 191–192:187–201

    Article  Google Scholar 

  • Zampieri P, Cavalagli N, Gusella V, Pellegrino C (2018) Collapse displacements of masonry arch with geometrical uncertainties on spreading supports. Comput Struct 208:118–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Milani .

Editor information

Editors and Affiliations

Outline of the Book Chapters

Outline of the Book Chapters

Della Torre S, Cantini L (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 2—Historical review of masonry arches and vaults. Trends in Historic Preservation and the relevance of understanding curved masonry structures. Research for Development.

Yuan Y, Milani G, Stockdale G (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 3—Survey and monitoring methods for masonry arches and vaults. Research for Development.

Garcia J, Martín C, Molinos R, Grau J (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 4—Digital Setting Out Techniques for Tile Vaults without Formwork. Research for Development.

Bianchini N, Gaetani A, Mendes N, Lourenço PB (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 5—Experimental behaviour of masonry: static and dynamic behaviour of arches and vaults. Research for Development.

Aita D (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 6—Revisiting classic methods for the equilibrium analysis of masonry arches and domes. Research for Development.

Hua Y, Milani G (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 7—Rigid block limit analysis of masonry arches with associated and non-associated slides. Research for Development.

Grillanda N, Chiozzi A, Milani G (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 8—NURBS-based limit analysis of masonry vaults. Research for Development.

Lemos JV, Gobbin F, Forgacs T, Sarhosis V (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 9—Discrete element modelling of masonry arch bridges, arches and vaults. Research for Development.

Ramage MH, Gatóo A, Al Asali MW (2022). From corbel arches to double curvature vaults: Analysis, conservation and restoration of masonry structures of architectural heritage. Chapter 10—Complex simplicity—Design of innovative sustainable thin-shell masonry structures. Research for Development.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milani, G., Sarhosis, V. (2022). Introduction. In: Milani, G., Sarhosis, V. (eds) From Corbel Arches to Double Curvature Vaults. Research for Development. Springer, Cham. https://doi.org/10.1007/978-3-031-12873-8_1

Download citation

Publish with us

Policies and ethics