Skip to main content

LyoPRONTO: Deterministic and Probabilistic Modeling – Tutorial and Case Study

  • Chapter
  • First Online:
Principles and Practices of Lyophilization in Product Development and Manufacturing

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 59))

  • 863 Accesses

Abstract

The current work extends the application of the Lyophilization and Process Optimization Tool (LyoPRONTO) from the deterministic (Shivkumar et al. AAPS PharmSciTech 2019;20(8):1–17) to the probabilistic approach taking into account the process parameters variations and uncertainties in the primary drying cycle. The step-by-step tutorial of using the online tool which includes the examples of freezing and primary drying calculator usage, design space generation, and primary drying optimization to create more efficient cycles is presented. In addition, the upgraded optimization procedure is shown which provides more flexibility towards practical applications. The tutorial includes the detailed test cases with thorough instructions. Also, the additional experimental validation is provided for the probabilistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Searles J. Observation and implications of sonic water vapor flow during freeze-drying. Am Pharm Rev. 2004;7:58–69.

    CAS  Google Scholar 

  2. Pikal MJ. Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying. PDA J Pharm Sci Technol. 1985;39(3):115–39.

    CAS  Google Scholar 

  3. Nail SL, Searles JA. Elements of quality by design in development and scale-up of freeze-dried parenterals. BioPharm Int. 2008;21(1):44.

    CAS  Google Scholar 

  4. Fissore D, Barresi AA. Scale-up and process transfer of freeze-drying recipes. Dry Technol. 2011;29(14):1673–84.

    Article  CAS  Google Scholar 

  5. Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J Pharm Sci. 2019;108(4):1378–95.

    Article  CAS  PubMed  Google Scholar 

  6. Geidobler R, Winter G. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm. 2013;85(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  7. Shivkumar G, Kshirsagar V, Zhu T, Sebastiao IB, Nail SL, Sacha GA, Alexeenko AA. Freeze-dryer equipment capability limit: comparison of computational modeling with experiments at laboratory scale. J Pharm Sci. 2019a;108(9):2972–81.

    Article  CAS  PubMed  Google Scholar 

  8. Koganti VR, Shalaev EY, Berry MR, Osterberg T, Youssef M, Hiebert DN, et al. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle. AAPS PharmSciTech. 2011;12(3):854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pikal MJ, Roy ML, Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial. J Pharm Sci. 1984;73(9):1224–37.

    Article  CAS  PubMed  Google Scholar 

  10. Ganguly A, Alexeenko AA, Schultz SG, Kim SG. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications. Eur J Pharm Biopharm. 2013;85(2):223–35.

    Article  CAS  PubMed  Google Scholar 

  11. Tchessalov S, Dassu D, Latshaw D, Nulu S. An industry perspective on the application of modeling to lyophilization process scale up and transfer. Am Pharm Rev. 2017;20.

    Google Scholar 

  12. Rajniak P, Moreira J, Tsinontides S, Pham D, Bermingham S. Integrated use of mechanistic models and targeted experiments for development, scale-up and optimization of lyophilization cycles: a single vial approach for primary drying. Dry Technol. 2020:1–16.

    Google Scholar 

  13. Kuu WY, Nail SL, Sacha G. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying. J Pharm Sci. 2009;98(3):1136–54.

    Article  CAS  PubMed  Google Scholar 

  14. Rambhatla S, Pikal MJ. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect. AAPS PharmSciTech. 2003;4(2):22–31.

    Article  PubMed Central  Google Scholar 

  15. Pikal MJ, Shah S, Senior D, Lang JE. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. J Pharm Sci. 1983;72(6):635–50.

    Article  CAS  PubMed  Google Scholar 

  16. Kuu WY, Hardwick LM, Akers MJ. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles. Int J Pharm. 2006;313(1–2):99–113.

    Article  CAS  PubMed  Google Scholar 

  17. Kuu WY, O’Bryan KR, Hardwick LM, Paul TW. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model. Pharm Dev Technol. 2011;16(4):343–57.

    Article  CAS  PubMed  Google Scholar 

  18. Patel SM, Chaudhuri S, Pikal MJ. Choked flow and importance of Mach I in freeze-drying process design. Chem Eng Sci. 2010;65(21):5716–27.

    Article  CAS  Google Scholar 

  19. Nail S, Tchessalov S, Shalaev E, Ganguly A, Renzi E, Dimarco F, et al. Recommended best practices for process monitoring instrumentation in pharmaceutical freeze drying—2017. AAPS PharmSciTech. 2017;18(7):2379–93.

    Article  CAS  PubMed  Google Scholar 

  20. Kshirsagar V, Tchessalov S, Kanka F, Hiebert D, Alexeenko A. Determining maximum sublimation rate for a production lyophilizer: computational modeling and comparison with ice slab tests. J Pharm Sci. 2019;108(1):382–90.

    Article  CAS  PubMed  Google Scholar 

  21. Pikal MJ, Pande P, Bogner R, Sane P, Mudhivarthi V, Sharma P. Impact of natural variations in freeze-drying parameters on product temperature history: application of quasi steady-state heat and mass transfer and simple statistics. AAPS PharmSciTech. 2018;19(7):2828–42.

    Article  PubMed  Google Scholar 

  22. Greco K, Mujat M, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, et al. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy. J Pharm Sci. 2013;102(6):1773–85.

    Article  CAS  PubMed  Google Scholar 

  23. Shivkumar G, Kazarin PS, Strongrich AD, Alexeenko AA. LyoPRONTO: an open-source lyophilization process optimization tool. AAPS PharmSciTech. 2019b;20(8):1–17.

    Article  CAS  Google Scholar 

  24. Scutella B, Passot S, Bourlés E, Fonseca F, Tréléa IC. How vial geometry variability influences heat transfer and product temperature during freeze-drying. J Pharm Sci. 2017;106(3):770–8

    Article  CAS  PubMed  Google Scholar 

  25. Scutella B, Trelea IC, Bourlés E, Fonseca F, Passot S. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying. Eur J Pharm Biopharm. 2018;128:379–88.

    Google Scholar 

  26. Sane P, Varma N, Ganguly A, Pikal M, Alexeenko A, Bogner RH. Spatial variation of pressure in the lyophilization product chamber part 2: experimental measurements and implications for scale-up and batch uniformity. AAPS PharmSciTech. 2017;18(2):369–80.

    Article  CAS  PubMed  Google Scholar 

  27. Bano G, De-Luca R, Tomba E, Marcelli A, Bezzo F, Barolo M. Primary drying optimization in pharmaceutical freeze-drying: a multivial stochastic modeling framework. Ind Eng Chem Res. 2020;59(11):5056–71.

    Article  CAS  Google Scholar 

  28. Vanbillemont B, Nicolaï N, Leys L, De Beer T. Model-based optimisation and control strategy for the primary drying phase of a lyophilisation process. Pharmaceutics. 2020;12(2):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKay MD, Morrison JD, Upton SC. Evaluating prediction uncertainty in simulation models. Comput Phys Commun. 1999;117(1–2):44–51.

    Article  CAS  Google Scholar 

  30. Adhikari N, Zhu T, Jameel F, Tharp T, Shang S, Alexeenko A. Sensitivity study to assess the robustness of primary drying process in pharmaceutical lyophilization. J Pharm Sci. 2020;109(2):1043–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hunt M, Haley B, McLennan M, Koslowski M, Murthy J, Strachan A. PUQ: A code for non-intrusive uncertainty propagation in computer simulations. Comput. Phys. Commun. 2015;194:97–107.

    Google Scholar 

  32. Fissore D, Pisano R. Computer-aided framework for the design of freeze-drying cycles: optimization of the operating conditions of the primary drying stage. Processes 2015;3(2):406–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Alexeenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 America Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kazarin, P., Alexeenko, A. (2023). LyoPRONTO: Deterministic and Probabilistic Modeling – Tutorial and Case Study. In: Jameel, F. (eds) Principles and Practices of Lyophilization in Product Development and Manufacturing . AAPS Advances in the Pharmaceutical Sciences Series, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-12634-5_15

Download citation

Publish with us

Policies and ethics